Abstract
Inspired by flatworm locomotion, we proposed concept of a novel flatworm like robot named WORMESH. The feature of this robot is its structure, in which the component links are connected in a mesh pattern in the vertical and horizontal directions with joints having multiple degrees of freedom. The entire body of the robot is flexed to create multiple pedal waves simultaneously, to move and work. The second experimental model, WORMESH-II was then developed, with newly designed interlocking double joints. Further, its mobility performance is being verified.
This paper discusses pedal wave locomotion of the WORMESH-II and how locomotion behaves under transitioned friction conditions. The simulation results depicted three significant: First, the pedal wave locomotion of WORMESH-II which has constructed by three units of kinematic chain arrangement is not continuous wave motion, and it is a combination of four locomotion steps. Second, there is an average velocity reduction when the robot moves between a lower friction area to a higher friction area. Third, in such a situation, locomotion can be improved by changing the robot’s front and rear joints’ wave parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cho, K.J., Wood, R.: Biomimetic robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 2nd ed., vol. 75, no. 1, pp. 544–545. Springer, Berlin (2016)
Rasanga, G.V.C., Hodoshima, R., Kotosaka, S.: The flatworm-like pedal locomotory robot WORMESH-I: locomotion based on the combination of pedal waves. In: International Conference on IEEE/SICE International Symposium on System Integrations (SII), pp. 72–77, Iwaki, January 2021
Mori, M., Hirose, S.: Locomotion of 3D snake-like robots - shifting and rolling control of active cord mechanism ACM-R3. J. Robot. Mechatron. 18(5), 521–528 (2006)
Gamus, B., Salem, L., Gat, A.D., Or, Y.: Understanding inchworm crawling for soft-robotics. In: IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1397–1404, April 2020. https://doi.org/10.1109/LRA.2020.2966407
Umedachi, T., Shimizu, M., Kawahara, Y.: Caterpillar-Inspired crawling Robot Using both compression and bending deformations. In: IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 670–676, April 2019. https://doi.org/10.1109/LRA.2019.2893438
Wu, X., Ma, S.: CPG-based control of serpentine locomotion of a snake-like robot. Mechatronics 20(2), 326–334 (2010)
Koopaee, M.J., Pretty, C., Classens, K., Chen, X.: Dynamical modeling and control of modular snake robots with series elastic actuators for pedal wave locomotion on uneven terrain. J. Mech. Des. 142(3), 032301–1-032301–11 (2020). https://doi.org/10.1115/1.4044691
Marvi, H., et al.: Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014). https://doi.org/10.1126/science.1255718
Chen, L., Wang, Y., Ma, S., Li, B.: Studies on lateral rolling locomotion of a snake robot. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA 2004, pp. 5070–5074, New Orleans, (2004). https://doi.org/10.1109/ROBOT.2004.1302521
Tanaka, M., Matsuno, F.: Control of snake robots with switching constraints: trajectory tracking with moving obstacle. Adv. Robot. 28(5), 415–429 (2014)
Koopaee, M.J., Bal, S., Pretty, C., Chen, X.: Design and development of a wheel-less snake robot with active stiffness control for adaptive pedal wave locomotion. J. Bionic Eng. 16(4), 593–607 (2019). https://doi.org/10.1007/s42235-019-0048-x
Li, D., Wang, C., Deng, H., Wei, Y.: Motion planning algorithm of a multi-joint snake-like robot based on improved serpenoid curve. IEEE Access 8, 8346–8360 (2020). https://doi.org/10.1109/ACCESS.2020.2964486
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rasanga, G.V.C., Hodoshima, R., Kotosaka, S. (2022). The Flatworm-Like Pedal Locomotory Robot WORMESH-II: Fundamental Properties of Pedal Wave Locomotion. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-86294-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86293-0
Online ISBN: 978-3-030-86294-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)