A Binary Classification Model for Toxicity Prediction in Drug Design | SpringerLink
Skip to main content

A Binary Classification Model for Toxicity Prediction in Drug Design

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2021)

Abstract

Toxicity in drug design is a very important step prior to human or animal evaluation phases. Establishing drug toxicity involves the modification or redesign of the drug into an analog to suppress or reduce the toxicity. In this work, two different deep neural networks architectures and a proposed model to classify drug toxicity were evaluated. Three datasets of molecular descriptors were build based on SMILES from the Tox21 database and the AhR protein to test the accuracy prediction of the models. All models were tested with different sets of hyperparameters. The proposed model showed higher accuracy and lower loss compared to the other architectures. The number of descriptors played a key roll in the accuracy of the proposed model along with the Adam optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson Jr., A.J., Markey, S.P.: Biochemical mechanisms of drug toxicity. In: Principles of Clinical Pharmacology, pp. 249–271. Elsevier (2007)

    Google Scholar 

  2. Bania, R.K.: COVID-19 public tweets sentiment analysis using TF-IDF and inductive learning models. INFOCOMP J. Comput. Sci. 19(2), 23–41 (2020)

    MathSciNet  Google Scholar 

  3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  4. Collins, F.S., Gray, G.M., Bucher, J.R.: Transforming environmental health protection. Science 319(5865), 906–907 (2008). https://doi.org/10.1126/science.1154619, https://science.sciencemag.org/content/319/5865/906

  5. Dearden, J.C.: In silico prediction of drug toxicity. J. Comput. Aided Mol. Des. 17(2–4), 119–127 (2003). https://doi.org/10.1023/A:1025361621494

    Article  Google Scholar 

  6. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945). https://doi.org/10.2307/1932409, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409

  7. Karim, A., Mishra, A., Newton, M.H., Sattar, A.: Efficient toxicity prediction via simple features using shallow neural networks and decision trees. ACS Omega 4(1), 1874–1888 (2019)

    Article  Google Scholar 

  8. Karim, A., Singh, J., Mishra, A., Dehzangi, A., Newton, M.A.H., Sattar, A.: Toxicity prediction by multimodal deep learning. In: Ohara, K., Bai, Q. (eds.) PKAW 2019. LNCS (LNAI), vol. 11669, pp. 142–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30639-7_12

    Chapter  Google Scholar 

  9. Kavlock, R.J., Austin, C.P., Tice, R.R.: Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal. 29(4), 485–487 (2009). https://doi.org/10.1111/j.1539-6924.2008.01168.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2008.01168.x

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  11. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017)

    Google Scholar 

  12. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)

    Article  Google Scholar 

  13. McKinney, W., et al.: Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56 (2010)

    Google Scholar 

  14. Muster, W., Breidenbach, A., Fischer, H., Kirchner, S., Müller, L., Pähler, A.: Computational toxicology in drug development. Drug Discovery Today 13(7–8), 303–310 (2008)

    Article  Google Scholar 

  15. O’Boyle, N.M., Morley, C., Hutchison, G.R.: Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem. Cent. J. 2(1), 1–7 (2008)

    Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Saldívar-González, F., Prieto-Martínez, F.D., Medina-Franco, J.L.: Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación química 28(1), 51–58 (2017)

    Article  Google Scholar 

  18. Sid, K., Batouche, M.C.: Big data analytics techniques in virtual screening for drug discovery. In: Lazaar, M., Tabii, Y., Chrayah, M., Achhab, M.A. (eds.) Proceedings of the 2nd International Conference on Big Data, Cloud and Applications, BDCA 2017, Tetouan, Morocco, 29–30 March 2017, pp. 9:1–9:7. ACM (2017). https://doi.org/10.1145/3090354.3090363

  19. Thomas, R.S., et al.: The US Federal Tox21 program: a strategic and operational plan for continued leadership. ALTEX - Altern. Anim. Exp. 35(2), 163–168 (2018)

    Google Scholar 

  20. Tice, R.R., Austin, C.P., Kavlock, R.J., Bucher, J.R.: Improving the human hazard characterization of chemicals: a Tox21 update. Environ. Health Perspect. 121(7), 756–765 (2013). https://doi.org/10.1289/ehp.1205784, https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.1205784

  21. Verbist, B., et al.: Using transcriptomics to guide lead optimization in drug discovery projects: lessons learned from the QSTAR project. Drug Discovery Today 20(5), 505–513 (2015)

    Article  Google Scholar 

  22. Wang, X., Song, K., Li, L., Chen, L.: Structure-based drug design strategies and challenges. Curr. Top. Med. Chem. 18(12), 998–1006 (2018)

    Article  Google Scholar 

  23. Zhang, L., Tan, J., Han, D., Zhu, H.: From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today 22(11), 1680–1685 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela-Salinas, G., Camacho-Cruz, H.E., Saldivar, A.J., Martinez-Rodriguez, J.L., Rodriguez-Rodriguez, J., Garcia-Perez, C. (2021). A Binary Classification Model for Toxicity Prediction in Drug Design. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics