Supporting Predictive Maintenance in Virtual Factory | SpringerLink
Skip to main content

Supporting Predictive Maintenance in Virtual Factory

  • Conference paper
  • First Online:
Smart and Sustainable Collaborative Networks 4.0 (PRO-VE 2021)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 629))

Included in the following conference series:

  • 2291 Accesses

Abstract

In Industry 4.0 manufacturing collaborative network, product design processes, manufacturing processes, maintenance processes should be integrated across different factories and enterprises. The collaborative manufacturing network 4.0 allows the amalgamation of manufacturing resources in multiple organizations to operate processes in a collaborative manner for reacting to the fast changes of markets or emergencies. In this paper, we propose a predictive maintenance service as a part of a virtual factory, a form of collaborative manufacturing network. Data-driven predictive maintenance service is built-in FIWARE, an industry 4.0 framework. To optimize predictive maintenance services based on different criteria within a virtual factor, such as geographical locations, similar types of machinery, or cost/time efficiency, etc., we provide our design and implementation to deal with providing better maintenance services and data exchanging across different collaborative partners with different requirements and modularizing of related functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 32889
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Upton, D., McAfee, A.: The Real Virtual Factory. Harv. Bus. Rev. (1996)

    Google Scholar 

  2. Koren, Y., Gu, X., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. 13(2), 121–136 (2017). https://doi.org/10.1007/s11465-018-0483-0

    Article  Google Scholar 

  3. Debevec, M., Simic, M., Herakovic, N.: Virtual factory as an advanced approach for production process optimization. Int. J. Simul. Model. 13, 66–78 (2014). https://doi.org/10.2507/IJSIMM13(1)6.260

    Article  Google Scholar 

  4. Xu, L., et al.: Overview of existing interoperability of virtual factories, D1.3, First EU project H2020-MSC-RISE-2016 Ref. 6742023. Technical report. EC (2019)

    Google Scholar 

  5. Xu, L., de Vrieze, P., Yu, H.N., Keith, P., Bai, Y.: Interoperability of virtual factory: an overview of concepts and research challenges. Int. J. Mechatron. Manuf. Syst. 13, 3–27 (2020)

    Google Scholar 

  6. Sang, G.M., Xu, L., de Vrieze, P.: Mid-sized companies in virtual factories a strategy for growth? IM&IO, 72–75 (2020)

    Google Scholar 

  7. Sang, G.M., Xu, L., de Vrieze, P., Bai, Y.: Towards predictive maintenance for flexible manufacturing using FIWARE. In: Dupuy-Chessa, S., Proper, H.A. (eds.) CAiSE 2020. LNBIP, vol. 382, pp. 17–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49165-9_2

    Chapter  Google Scholar 

  8. Sang, G.M., Xu, L., de Vrieze, P., Bai, Y.: Applying predictive maintenance in flexible manufacturing. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) PRO-VE 2020. IAICT, vol. 598, pp. 203–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62412-5_17

    Chapter  Google Scholar 

  9. Thoben, K.-D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing – a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017). https://doi.org/10.20965/ijat.2017.p0004

    Article  Google Scholar 

  10. Sang, G.M., Xu, L., de Vrieze, P.: Simplifying Big Data analytics systems with a reference architecture. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 242–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_23

    Chapter  Google Scholar 

  11. Sang, G.M., Xu, L., de Vrieze, P., Bai, Y., Pan, F.: Predictive maintenance in Industry 4.0. In: Proceedings of the 10th International Conference on Information Systems and Technologies, pp. 1–11. ACM, New York (2020). https://doi.org/10.1145/3447568.3448537

  12. Sang, G.M., Xu, L., de Vrieze, P.: A reference architecture for big data systems. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), pp. 370–375. IEEE (2016). https://doi.org/10.1109/SKIMA.2016.7916249

  13. Zezulka, F., Marcon, P., Vesely, I., Sajdl, O.: Industry 4.0 – an Introduction in the phenomenon. IFAC-PapersOnLine 49(25), 8–12 (2016). https://doi.org/10.1016/j.ifacol.2016.12.002

    Article  Google Scholar 

  14. Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming competition (2014)

    Google Scholar 

  15. FIWARE: FIWARE virtual factory reference architecture. https://www.fiware4industry.com/virtual-factory-reference-architecture/. Accessed 15 Apr 2021

  16. Otto, B., Steinbuß, S., Teuscher, A., Lohmann, S.: Reference architecture model Version 3.0. International Data Space Association (2019)

    Google Scholar 

  17. Mobley, R.K.: An Introduction to Predictive Maintenance, 2nd edn. (2002).https://doi.org/10.1016/B978-075067531-4/50018-X

  18. Lee, J., Bagheri, B., Kao, H.-A.: A Cyber-Physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  19. Wang, L.: Machine availability monitoring and machining process planning towards Cloud manufacturing. CIRP J. Manuf. Sci. Technol. 6, 263–273 (2013). https://doi.org/10.1016/j.cirpj.2013.07.001

    Article  Google Scholar 

  20. Wang, H.: A survey of maintenance policies of deteriorating systems. Eur. J. Oper. Res. 139, 469–489 (2002). https://doi.org/10.1016/S0377-2217(01)00197-7

    Article  MATH  Google Scholar 

  21. Chan, G.K., Asgarpoor, S.: Optimum maintenance policy with Markov processes. Electr. Power Syst. Res. 76, 452–456 (2006). https://doi.org/10.1016/j.epsr.2005.09.010

    Article  Google Scholar 

  22. Nicolai, R.P., Dekker, R.: A review of multi-component maintenance models. In: Proceedings of the European Safety and Reliability Conference 2007, ESREL 2007 - Risk, Reliability and Societal Safety (2007)

    Google Scholar 

  23. Dekker, R., Wildeman, R.E., Van Der Duyn Schouten, F.A.: A review of multi-component maintenance models with economic dependence. Math. Methods Oper. Res. 45, 411–435 (1997). https://doi.org/10.1007/BF01194788

    Article  MathSciNet  MATH  Google Scholar 

  24. Van Horenbeek, A., Pintelon, L.: A dynamic predictive maintenance policy for complex multi-component systems. Reliab. Eng. Syst. Saf. 120, 39–50 (2013). https://doi.org/10.1016/j.ress.2013.02.029

    Article  Google Scholar 

  25. Pinedo, M.L.: Scheduling. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26580-3

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research is part of the FIRST project which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 734599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Muan Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sang, G.M., Xu, L., de Vrieze, P. (2021). Supporting Predictive Maintenance in Virtual Factory. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds) Smart and Sustainable Collaborative Networks 4.0. PRO-VE 2021. IFIP Advances in Information and Communication Technology, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-85969-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85969-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85968-8

  • Online ISBN: 978-3-030-85969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics