Abstract
In Industry 4.0 manufacturing collaborative network, product design processes, manufacturing processes, maintenance processes should be integrated across different factories and enterprises. The collaborative manufacturing network 4.0 allows the amalgamation of manufacturing resources in multiple organizations to operate processes in a collaborative manner for reacting to the fast changes of markets or emergencies. In this paper, we propose a predictive maintenance service as a part of a virtual factory, a form of collaborative manufacturing network. Data-driven predictive maintenance service is built-in FIWARE, an industry 4.0 framework. To optimize predictive maintenance services based on different criteria within a virtual factor, such as geographical locations, similar types of machinery, or cost/time efficiency, etc., we provide our design and implementation to deal with providing better maintenance services and data exchanging across different collaborative partners with different requirements and modularizing of related functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Upton, D., McAfee, A.: The Real Virtual Factory. Harv. Bus. Rev. (1996)
Koren, Y., Gu, X., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. 13(2), 121–136 (2017). https://doi.org/10.1007/s11465-018-0483-0
Debevec, M., Simic, M., Herakovic, N.: Virtual factory as an advanced approach for production process optimization. Int. J. Simul. Model. 13, 66–78 (2014). https://doi.org/10.2507/IJSIMM13(1)6.260
Xu, L., et al.: Overview of existing interoperability of virtual factories, D1.3, First EU project H2020-MSC-RISE-2016 Ref. 6742023. Technical report. EC (2019)
Xu, L., de Vrieze, P., Yu, H.N., Keith, P., Bai, Y.: Interoperability of virtual factory: an overview of concepts and research challenges. Int. J. Mechatron. Manuf. Syst. 13, 3–27 (2020)
Sang, G.M., Xu, L., de Vrieze, P.: Mid-sized companies in virtual factories a strategy for growth? IM&IO, 72–75 (2020)
Sang, G.M., Xu, L., de Vrieze, P., Bai, Y.: Towards predictive maintenance for flexible manufacturing using FIWARE. In: Dupuy-Chessa, S., Proper, H.A. (eds.) CAiSE 2020. LNBIP, vol. 382, pp. 17–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49165-9_2
Sang, G.M., Xu, L., de Vrieze, P., Bai, Y.: Applying predictive maintenance in flexible manufacturing. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) PRO-VE 2020. IAICT, vol. 598, pp. 203–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62412-5_17
Thoben, K.-D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing – a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017). https://doi.org/10.20965/ijat.2017.p0004
Sang, G.M., Xu, L., de Vrieze, P.: Simplifying Big Data analytics systems with a reference architecture. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 242–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_23
Sang, G.M., Xu, L., de Vrieze, P., Bai, Y., Pan, F.: Predictive maintenance in Industry 4.0. In: Proceedings of the 10th International Conference on Information Systems and Technologies, pp. 1–11. ACM, New York (2020). https://doi.org/10.1145/3447568.3448537
Sang, G.M., Xu, L., de Vrieze, P.: A reference architecture for big data systems. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), pp. 370–375. IEEE (2016). https://doi.org/10.1109/SKIMA.2016.7916249
Zezulka, F., Marcon, P., Vesely, I., Sajdl, O.: Industry 4.0 – an Introduction in the phenomenon. IFAC-PapersOnLine 49(25), 8–12 (2016). https://doi.org/10.1016/j.ifacol.2016.12.002
Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming competition (2014)
FIWARE: FIWARE virtual factory reference architecture. https://www.fiware4industry.com/virtual-factory-reference-architecture/. Accessed 15 Apr 2021
Otto, B., Steinbuß, S., Teuscher, A., Lohmann, S.: Reference architecture model Version 3.0. International Data Space Association (2019)
Mobley, R.K.: An Introduction to Predictive Maintenance, 2nd edn. (2002).https://doi.org/10.1016/B978-075067531-4/50018-X
Lee, J., Bagheri, B., Kao, H.-A.: A Cyber-Physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001
Wang, L.: Machine availability monitoring and machining process planning towards Cloud manufacturing. CIRP J. Manuf. Sci. Technol. 6, 263–273 (2013). https://doi.org/10.1016/j.cirpj.2013.07.001
Wang, H.: A survey of maintenance policies of deteriorating systems. Eur. J. Oper. Res. 139, 469–489 (2002). https://doi.org/10.1016/S0377-2217(01)00197-7
Chan, G.K., Asgarpoor, S.: Optimum maintenance policy with Markov processes. Electr. Power Syst. Res. 76, 452–456 (2006). https://doi.org/10.1016/j.epsr.2005.09.010
Nicolai, R.P., Dekker, R.: A review of multi-component maintenance models. In: Proceedings of the European Safety and Reliability Conference 2007, ESREL 2007 - Risk, Reliability and Societal Safety (2007)
Dekker, R., Wildeman, R.E., Van Der Duyn Schouten, F.A.: A review of multi-component maintenance models with economic dependence. Math. Methods Oper. Res. 45, 411–435 (1997). https://doi.org/10.1007/BF01194788
Van Horenbeek, A., Pintelon, L.: A dynamic predictive maintenance policy for complex multi-component systems. Reliab. Eng. Syst. Saf. 120, 39–50 (2013). https://doi.org/10.1016/j.ress.2013.02.029
Pinedo, M.L.: Scheduling. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26580-3
Acknowledgments
This research is part of the FIRST project which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 734599.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Sang, G.M., Xu, L., de Vrieze, P. (2021). Supporting Predictive Maintenance in Virtual Factory. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds) Smart and Sustainable Collaborative Networks 4.0. PRO-VE 2021. IFIP Advances in Information and Communication Technology, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-85969-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-85969-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85968-8
Online ISBN: 978-3-030-85969-5
eBook Packages: Computer ScienceComputer Science (R0)