Abstract
The integration of Artificial Intelligence (AI) in manufacturing is often pursued as technology push. In contrast, this paper looks upon the AI-human interaction from a viewpoint that considers both to play an important role in reshaping their individual capabilities. It specifically focuses on how humans can play an important role in enhancing AI capabilities. The introduced concepts are tested in an industrial case study of vision-based inspection in production lines. Furthermore, the paper highlights the need to consider relevant implications for work design for AI integration. The contribution can be of practical value for system developers and work designers in how to target at the design stage the human contribution in AI-enabled systems for production environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
DOD: Manpower, personnel, training, and safety (MPTS) in the defense system acquisition process. DoD Directive 5000.53, Washington, DC (1988)
Caroly, S., Barcellini, F.: A conceptual framework of collective activity in constructive ergonomics. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 822, pp. 658–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96077-7_71
Burggräf, P., Wagner, J., Saßmannshausen, T.M.: Sustainable interaction of human and artificial intelligence in cyber production management systems. In: Behrens, B.-A., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.J. (eds.) WGP 2020. LNPE, pp. 508–517. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-62138-7_51
Raisch, S., Krakowski, S.: Artificial intelligence and management: the automation–augmentation paradox. Acad. Manage. Rev. 46, 192–210 (2021). https://doi.org/10.5465/AMR.2018.0072
Grønsund, T., Aanestad, M.: Augmenting the algorithm: emerging human-in-the-loop work configurations. J. Strateg. Inf. Syst. 29, 101614 (2020). https://doi.org/10.1016/j.jsis.2020.101614
Emmanouilidis, C., et al.: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems. Annu. Rev. Control. 47, 249–265 (2019). https://doi.org/10.1016/j.arcontrol.2019.03.004
Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10, 141–160 (2009). https://doi.org/10.1016/j.cogsys.2006.07.004
Kaptelinin, V., Nardi, B.: Affordances in HCI: toward a mediated action perspective. In: CHI ’12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, Texas, USA, pp. 967–976 (2012). https://doi.org/10.1145/2207676.2208541
Neumann, W.P., Winkelhaus, S., Grosse, E.H., Glock, C.H.: Industry 4.0 and the human factor – a systems framework and analysis methodology for successful development. Int. J. Prod. Econ. 233, 107992 (2021). https://doi.org/10.1016/j.ijpe.2020.107992
Parker, S.K., Grote, G.: Automation, algorithms, and beyond: why work design matters more than ever in a digital world. Appl. Psychol. (2020). https://doi.org/10.1111/apps.12241
Cimini, C., Pirola, F., Pinto, R., Cavalieri, S.: A human-in-the-loop manufacturing control architecture for the next generation of production systems. J. Manufact. Syst. 54, 258–271 (2020). https://doi.org/10.1016/j.jmsy.2020.01.002
Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, New York (2020)
Raisch, S., Krakowski, S.: Artificial intelligence and management: the automation-augmentation paradox. Acad. Manage. Rev. 46(1), 192–210 (2020). https://doi.org/10.5465/2018.0072
Kadir, B.A., Broberg, O.: Human-centered design of work systems in the transition to industry 4.0. Appl. Ergon. 92, 103334 (2021). https://doi.org/10.1016/j.apergo.2020.103334
Romero, D., et al.: Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: CIE 2016: 46th International Conferences on Computers and Industrial Engineering, Tianjin (2016)
Raisamo, R., Rakkolainen, I., Majaranta, P., Salminen, K., Rantala, J., Farooq, A.: Human augmentation: past, present and future. Int. J. Hum. Comput. Stud. 131, 131–143 (2019). https://doi.org/10.1016/j.ijhcs.2019.05.008
Lampe, M., Strassner, M., Fleisch, E.: A Ubiquitous computing environment for aircraft maintenance. In: Proceedings of the 2004 ACM Symposium on Applied Computing - SAC 2004, p. 1586 (2004). https://doi.org/10.1145/967900.968217
Washburn, C., Stringfellow, P., Gramopadhye, A.: Using multimodal technologies to enhance aviation maintenance inspection training. In: Duffy, V.G. (ed.) ICDHM 2007. LNCS, vol. 4561, pp. 1018–1026. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73321-8_114
Schwald, B., DeLaval, B.: An augmented aeality system for training and assistance to maintenance in the industrial context. In: WSCG 2003, International Conference in Cent. Europe Comput. Graph., Vis. Comput. Vision, pp. 425–432 (2003). https://doi.org/10.1007/11941354_29
Li, J.R., Khoo, L.P., Tor, S.B.: Desktop virtual reality for maintenance training: an object oriented prototype system (V-REALISM). Comput. Ind. 52, 109–125 (2003). https://doi.org/10.1016/S0166-3615(03)00103-9
Papathanasiou, N., Karampatzakis, D., Koulouriotis, D., Emmanouilidis, C.: Mobile personalised support in industrial environments: coupling learning with context - aware features. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol. 438, pp. 298–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44739-0_37
Fox, S., Aranko, O., Heilala, J., Vahala, P.: Exoskeletons: comprehensive, comparative and critical analyses of their potential to improve manufacturing performance. J. Manuf. Technol. Manage. 31, 1261–1280 (2019). https://doi.org/10.1108/JMTM-01-2019-0023
Goose, S., Sudarsky, S., Zhang, X., Navab, N.: Speech-enabled augmented reality supporting mobile industrial maintenance. IEEE Pervasive Comput. 2, 65–70 (2003). https://doi.org/10.1109/MPRV.2003.1186727
Zhang, B., Wang, J., Fuhlbrigge, T.: A review of the commercial brain-computer interface technology from perspective of industrial robotics. In: 2010 IEEE International Conference on Automation and Logistics, pp. 379–384 (2010). https://doi.org/10.1109/ICAL.2010.5585311
Somerville, I.: Software Engineering. Pearson, Harlow (2016)
Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE. 109, 43–76 (2021). https://doi.org/10.1109/JPROC.2020.3004555
Deng, C., Ji, X., Rainey, C., Zhang, J., Lu, W.: Integrating machine learning with human knowledge. iScience 23, 101656 (2020). https://doi.org/10.1016/j.isci.2020.101656
James Wilson, H., Daugherty, P.R.: Collaborative intelligence: humans and AI are joining forces. Harv. Bus. Rev. 96(4), 114–123 (2018)
Lyytinen, K., Nickerson, J.V, King, J.L.: Metahuman systems = humans + machines that learn. J. Inf. Technol., 0268396220915917 (2020). https://doi.org/10.1177/0268396220915917
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, no. 10, p. 3361 (1995)
Monarch, M.: No TitleHuman-in-the-Loop Machine Learning. Manning (2021)
Kolus, A., Wells, R., Neumann, P.: Production quality and human factors engineering: a systematic review and theoretical framework. Appl. Ergon. 73, 55–89 (2018). https://doi.org/10.1016/j.apergo.2018.05.010
Oldham, G.R., Richard Hackman, J.: Not what it was and not what it will be: the future of job design research. J. Organ. Behav. 31, 463–479 (2010). https://doi.org/10.1002/job.678
Morgeson, F.P., Humphrey, S.E.: Job and team design: toward a more integrative conceptualization of work design. Res. Pers. Hum. Resour. Manage. 27, 39–91 (2008). https://doi.org/10.1016/S0742-7301(08)27002-7
Acknowledgements
The research was supported through H2020 grant ID 956573. Sourcing the image data in the project through Philips Consumer Lifestyle B.V. is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Emmanouilidis, C., Waschull, S., Bokhorst, J.A.C., Wortmann, J.C. (2021). Human in the AI Loop in Production Environments. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-030-85910-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-85910-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85909-1
Online ISBN: 978-3-030-85910-7
eBook Packages: Computer ScienceComputer Science (R0)