Abstract
Many techniques have been developed to infer Boolean regulations from a prior knowledge network and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. This paper provides a formalisation of the inference of regulations for metabolic networks as a satisfiability problem with two levels of quantifiers, and introduces a method based on Answer Set Programming to solve this problem on a small-scale example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baral, C.: Knowledge Representation. Reasoning and Declarative Problem Solving., Cambridge University Press, New York (2003)
Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004). https://doi.org/10.1016/j.jtbi.2004.04.003
Buescher, J.M., et al.: Global network reorganization during dynamic adaptations of bacillus subtilis metabolism. Science 335(6072), 1099–1103 (2012). https://doi.org/10.1126/science.1206871
Chaves, M., Oyarzún, D.A., Gouzé, J.L.: Analysis of a genetic-metabolic oscillator with piecewise linear models. J. Theor. Biol. 462, 259–269 (2019). https://doi.org/10.1016/j.jtbi.2018.10.026
Chaves, M., Tournier, L., Gouzé, J.L.: Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor 58(2–3), 217–232 (2010). https://doi.org/10.1007/s10441-010-9097-6
Chevalier, S., Froidevaux, C., Pauleve, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2019). https://doi.org/10.1109/ictai.2019.00014
Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004). https://doi.org/10.1038/nature02456
Covert, M.W., Palsson, B.Ø.: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277(31), 28058–28064 (2002). https://doi.org/10.1046/j.1462-2920.2002.00282.x
Covert, M.W., Schilling, C., Palsson, B.: Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213(1), 73–88 (2001). https://doi.org/10.1006/jtbi.2001.2405
Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.org/10.1007/bf01536399
Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer, pp. 40–110. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03754-2_2
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control. Preliminary report. CoRR abs/1405.3694 (2014)
Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming. Theor. Pract. Logic Prog. 11(4–5), 821–839 (2011). https://doi.org/10.1017/s1471068411000329
Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27, no. 1 (2013). https://ojs.aaai.org/index.php/AAAI/article/view/8585
de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002). https://doi.org/10.1089/10665270252833208
Liu, L., Bockmayr, A.: Regulatory dynamic enzyme-cost flux balance analysis: a unifying framework for constraint-based modeling. J. Theor. Biol. 501, 110317 (2020). https://doi.org/10.1016/j.jtbi.2020.110317
Marmiesse, L., Peyraud, R., Cottret, L.: FlexFlux: combining metabolic flux and regulatory network analyses. BMC Syst. Biol. 9(1), 1–13 (2015). https://doi.org/10.1186/s12918-015-0238-z
Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010). https://doi.org/10.1038/nbt.1614
Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems 149, 139–153 (2016). https://doi.org/10.1016/j.biosystems.2016.07.009
Oyarzún, D.A., Chaves, M., Hoff-Hoffmeyer-Zlotnik, M.: Multistability and oscillations in genetic control of metabolism. J. Theor. Biol. 295, 139–153 (2012). https://doi.org/10.1016/j.jtbi.2011.11.017
Razzaq, M., Paulevé, L., Siegel, A., Saez-Rodriguez, J., Bourdon, J., Guziolowski, C.: Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data. PLOS Comput. Biol. 14(10), e1006538 (2018). https://doi.org/10.1371/journal.pcbi.1006538
Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1), 331 (2009). https://doi.org/10.1038/msb.2009.87
Tournier, L., Goelzer, A., Fromion, V.: Optimal resource allocation enables mathematical exploration of microbial metabolic configurations. J. Math. Biol. 75(6–7), 1349–1380 (2017). https://doi.org/10.1007/s00285-017-1118-5
Tsiantis, N., Balsa-Canto, E., Banga, J.R.: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework. Bioinformatics 34(14), 2433–2440 (2018). https://doi.org/10.1093/bioinformatics/bty139
Videla, S., Saez-Rodriguez, J., Guziolowski, C., Siegel, A.: Caspo: a toolbox for automated reasoning on the response of logical signaling networks families. Bioinformatics p. btw738 (2017). https://doi.org/10.1093/bioinformatics/btw738
Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. U.S.A. 114(28), 7234–7239 (2017). https://doi.org/10.1073/pnas.1617387114
Acknowledgments
Work of LC and CB is supported by the French Laboratory of Excellence project “TULIP” (grant number ANR-10-LABX-41; ANR-11-IDEX-0002-02). Work of LP is supported by the French Agence Nationale pour la Recherche (ANR) in the scope of the project “BNeDiction” (grant number ANR-20-CE45-0001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Binarized Metabolic Steady State
B Experiments and Simulations
Simulation made with FlexFlux of the regulated metabolic network in Fig. 1 for each experiment (Table 3a). Time step is set to \(0.01\). Reaction domains are \( \forall r \in \{ \text {Tc1},\,\text {Tc2} \},\,(l_r,\, u_r) = (0,\, 10.5) \), \( \forall r \in \{ \text {Td},\,\text {Te} \},\,(l_r,\, u_r) = (0,\, 12.0) \), \( \forall r \in \{ \text {R6},\,\text {R7},\,\text {Rres},\,\text {Growth} \},\,(l_r,\, u_r) = (0,\, 9999) \) and for Oxygen, \( (l_r,\, u_r) = (0,\, 15.0)\). The same simulation graphs are obtained using the local function \(f_\text {Rres} = \lnot x_\text {RPO2}\) and \(f_\text {Rres} = 1\).
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., Siegel, A. (2021). Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-85633-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85632-8
Online ISBN: 978-3-030-85633-5
eBook Packages: Computer ScienceComputer Science (R0)