Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study | SpringerLink
Skip to main content

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12881))

Included in the following conference series:

  • 783 Accesses

Abstract

Many techniques have been developed to infer Boolean regulations from a prior knowledge network and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. This paper provides a formalisation of the inference of regulations for metabolic networks as a satisfiability problem with two levels of quantifiers, and introduces a method based on Answer Set Programming to solve this problem on a small-scale example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baral, C.: Knowledge Representation. Reasoning and Declarative Problem Solving., Cambridge University Press, New York (2003)

    Google Scholar 

  2. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004). https://doi.org/10.1016/j.jtbi.2004.04.003

    Article  PubMed  Google Scholar 

  3. Buescher, J.M., et al.: Global network reorganization during dynamic adaptations of bacillus subtilis metabolism. Science 335(6072), 1099–1103 (2012). https://doi.org/10.1126/science.1206871

    Article  CAS  PubMed  Google Scholar 

  4. Chaves, M., Oyarzún, D.A., Gouzé, J.L.: Analysis of a genetic-metabolic oscillator with piecewise linear models. J. Theor. Biol. 462, 259–269 (2019). https://doi.org/10.1016/j.jtbi.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  5. Chaves, M., Tournier, L., Gouzé, J.L.: Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor 58(2–3), 217–232 (2010). https://doi.org/10.1007/s10441-010-9097-6

    Article  PubMed  Google Scholar 

  6. Chevalier, S., Froidevaux, C., Pauleve, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2019). https://doi.org/10.1109/ictai.2019.00014

  7. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004). https://doi.org/10.1038/nature02456

    Article  CAS  PubMed  Google Scholar 

  8. Covert, M.W., Palsson, B.Ø.: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277(31), 28058–28064 (2002). https://doi.org/10.1046/j.1462-2920.2002.00282.x

    Article  CAS  PubMed  Google Scholar 

  9. Covert, M.W., Schilling, C., Palsson, B.: Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213(1), 73–88 (2001). https://doi.org/10.1006/jtbi.2001.2405

  10. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.org/10.1007/bf01536399

    Article  Google Scholar 

  11. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer, pp. 40–110. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03754-2_2

    Book  Google Scholar 

  12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)

    Google Scholar 

  13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control. Preliminary report. CoRR abs/1405.3694 (2014)

  14. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming. Theor. Pract. Logic Prog. 11(4–5), 821–839 (2011). https://doi.org/10.1017/s1471068411000329

    Article  Google Scholar 

  15. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27, no. 1 (2013). https://ojs.aaai.org/index.php/AAAI/article/view/8585

  16. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002). https://doi.org/10.1089/10665270252833208

    Article  PubMed  Google Scholar 

  17. Liu, L., Bockmayr, A.: Regulatory dynamic enzyme-cost flux balance analysis: a unifying framework for constraint-based modeling. J. Theor. Biol. 501, 110317 (2020). https://doi.org/10.1016/j.jtbi.2020.110317

  18. Marmiesse, L., Peyraud, R., Cottret, L.: FlexFlux: combining metabolic flux and regulatory network analyses. BMC Syst. Biol. 9(1), 1–13 (2015). https://doi.org/10.1186/s12918-015-0238-z

  19. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010). https://doi.org/10.1038/nbt.1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems 149, 139–153 (2016). https://doi.org/10.1016/j.biosystems.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  21. Oyarzún, D.A., Chaves, M., Hoff-Hoffmeyer-Zlotnik, M.: Multistability and oscillations in genetic control of metabolism. J. Theor. Biol. 295, 139–153 (2012). https://doi.org/10.1016/j.jtbi.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  22. Razzaq, M., Paulevé, L., Siegel, A., Saez-Rodriguez, J., Bourdon, J., Guziolowski, C.: Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data. PLOS Comput. Biol. 14(10), e1006538 (2018). https://doi.org/10.1371/journal.pcbi.1006538

  23. Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1), 331 (2009). https://doi.org/10.1038/msb.2009.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tournier, L., Goelzer, A., Fromion, V.: Optimal resource allocation enables mathematical exploration of microbial metabolic configurations. J. Math. Biol. 75(6–7), 1349–1380 (2017). https://doi.org/10.1007/s00285-017-1118-5

    Article  PubMed  Google Scholar 

  25. Tsiantis, N., Balsa-Canto, E., Banga, J.R.: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework. Bioinformatics 34(14), 2433–2440 (2018). https://doi.org/10.1093/bioinformatics/bty139

    Article  CAS  PubMed  Google Scholar 

  26. Videla, S., Saez-Rodriguez, J., Guziolowski, C., Siegel, A.: Caspo: a toolbox for automated reasoning on the response of logical signaling networks families. Bioinformatics p. btw738 (2017). https://doi.org/10.1093/bioinformatics/btw738

  27. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. U.S.A. 114(28), 7234–7239 (2017). https://doi.org/10.1073/pnas.1617387114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work of LC and CB is supported by the French Laboratory of Excellence project “TULIP” (grant number ANR-10-LABX-41; ANR-11-IDEX-0002-02). Work of LP is supported by the French Agence Nationale pour la Recherche (ANR) in the scope of the project “BNeDiction” (grant number ANR-20-CE45-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Paulevé .

Editor information

Editors and Affiliations

Appendices

A Binarized Metabolic Steady State

Table 3. All the Boolean metabolic steady states admissible for the metabolic network \(\mathcal {N}\) show Fig. 1a. The external metabolite Biomass is not shown since its value can be both \(0\) and \(1\) for each Boolean metabolic steady state. The experimentation column indicates the numbers of the experiments where the Boolean metabolic steady states occurs.

B Experiments and Simulations

Fig. 4.
figure 4figure 4

Simulation made with FlexFlux of the regulated metabolic network in Fig. 1 for each experiment (Table 3a). Time step is set to \(0.01\). Reaction domains are \( \forall r \in \{ \text {Tc1},\,\text {Tc2} \},\,(l_r,\, u_r) = (0,\, 10.5) \), \( \forall r \in \{ \text {Td},\,\text {Te} \},\,(l_r,\, u_r) = (0,\, 12.0) \), \( \forall r \in \{ \text {R6},\,\text {R7},\,\text {Rres},\,\text {Growth} \},\,(l_r,\, u_r) = (0,\, 9999) \) and for Oxygen, \( (l_r,\, u_r) = (0,\, 15.0)\). The same simulation graphs are obtained using the local function \(f_\text {Rres} = \lnot x_\text {RPO2}\) and \(f_\text {Rres} = 1\).

Table 4. All the different binarized metabolic steady states of each experiment. They are the input data used to solve the inference problem.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., Siegel, A. (2021). Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85633-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85632-8

  • Online ISBN: 978-3-030-85633-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics