Abstract
Software that uses Artificial Intelligence technology like Machine Learning is becoming ubiquitous with even more applications ahead. Yet, the very nature of these systems has made it very hard to understand how they operate, creating a demand for explanations. While many approaches have been and are being developed, it remains unclear how strong this demand is for different domains, application types, and user groups. To assess this, we introduce a novel survey scale to quantify the demand for explainability. We also apply this scale to an exemplary set of applications, novel and traditional, in surveys with 212 participants, showing that interest in explainability is high in general for intelligent systems but also traditional software. While this validates the heightened interest in explainability, it also reveals further questions, e.g. where we can find synergies or how intelligent systems require different explanations compare to traditional but equally complex software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
Amershi, S., et al.: Guidelines for human-AI interaction. In: Brewster, S.A., Fitzpatrick, G., Cox, A.L., Kostakos, V. (eds.) Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, 04–09 May 2019, p. 3. ACM (2019)
Barbalau, A., Cosma, A., Ionescu, R.T., Popescu, M.: A generic and model-agnostic exemplar synthetization framework for explainable AI (2020)
Bohlender, D., Köhl, M.A.: Towards a characterization of explainable systems. CoRR (abs/1902.03096) (2019)
Bunt, A., Lount, M., Lauzon, C.: Are explanations always important?: a study of deployed, low-cost intelligent interactive systems. In: Duarte, C., Carriço, L., Jorge, J.A., Oviatt, S.L., Gonçalves, D. (eds.) 17th International Conference on Intelligent User Interfaces, IUI 2012, Lisbon, Portugal, 14–17 February 2012, pp. 169–178. ACM (2012)
Cohen, I.G., Graver, H.: A doctor’s touch: What big data in health care can teach us about predictive policing. SSRN Electron. J. (2019)
Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019)
Edison, S.W., Geissler, G.L.: Measuring attitudes towards general technology: antecedents, hypotheses and scale development. J. Target. Meas. Anal. Mark. 12(2), 137–156 (2003)
Ehrlich, K., Kirk, S.E., Patterson, J.F., Rasmussen, J.C., Ross, S.I., Gruen, D.M.: Taking advice from intelligent systems: the double-edged sword of explanations. In: Pu, P., Pazzani, M.J., André, E., Riecken, D. (eds.) Proceedings of the 16th International Conference on Intelligent User Interfaces, IUI 2011, Palo Alto, CA, USA, 13–16 February, 2011, pp. 125–134. ACM (2011)
Eiband, M., Buschek, D., Kremer, A., Hussmann, H.: The impact of placebic explanations on trust in intelligent systems. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. CHI EA 2019, New York, NY, USA, pp. 1–6 Association for Computing Machinery (2019)
Eiband, M., Völkel, S.T., Buschek, D., Cook, S., Hussmann, H.: When people and algorithms meet: user-reported problems in intelligent everyday applications. In: Fu, W., Pan, S., Brdiczka, O., Chau, P., Calvary, G. (eds.) Proceedings of the 24th International Conference on Intelligent User Interfaces, IUI 2019, Marina del Ray, CA, USA, 17–20 March 2019, pp. 96–106. ACM (2019)
Gade, K., Geyik, S.C., Kenthapadi, K., Mithal, V., Taly, A.: Explainable AI in industry. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD 2019, New York NY, USA, pp. 3203–3204. Association for Computing Machinery (2019)
Gaviria, C., Corredor, J.A., Zuluaga-Rendón, Z.: “if it matters, I can explain it”: social desirability of knowledge increases the illusion of explanatory depth. In: Gunzelmann, G., Howes, A., Tenbrink, T., Davelaar, E.J. (eds.) Proceedings of the 39th Annual Meeting of the Cognitive Science Society, CogSci 2017, London, UK, 16–29 July 2017 (2017). cognitivesciencesociety.org
Goebel, R., et al.: Explainable AI: the new 42? In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) Machine Learning and Knowledge Extraction, pp. 295–303. Springer, Cham (2018)
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explainable artificial intelligence. Sci. Robotics 4(37) (2019)
Hall, M., Harborne, D., Tomsett, R., Galetic, V., Quintana-Amate, S.: A systematic method to understand requirements for explainable AI (xai) systems (2019)
Hase, P., Bansal, M.: Evaluating explainable AI: which algorithmic explanations help users predict model behavior? (2020)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. CoRR (abs/1812.04608) (2018)
Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? CoRR (abs/1712.09923) (2017)
Lundberg, S.M., et al.: Explainable AI for trees: From local explanations to global understanding. CoRR (abs/1905.04610) (2019)
Mair, Patrick: Factor Analysis. In: Modern Psychometrics with R. UR, pp. 17–61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93177-7_2
Melis, M., Demontis, A., Pintor, M., Sotgiu, A., Biggio, B.: SECML: a python library for secure and explainable machine learning (2019)
Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences. CoRR (abs/1712.00547) (2017)
Mittelstadt, B.D., Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sci. Robotics 2(6) (2017)
Ribera, M., Lapedriza, À.: Can we do better explanations? A proposal of user-centered explainable AI. In: Trattner, C., Parra, D., Riche, N. (eds.) Joint Proceedings of the ACM IUI 2019 Workshops co-located with the 24th ACM Conference on Intelligent User Interfaces (ACM IUI 2019), Los Angeles, USA, March 20, 2019. CEUR Workshop Proceedings, vol. 2327. CEUR-WS.org (2019)
Rozenblit, L., Keil, F.C.: The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26(5), 521–562 (2002)
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): toward medical xai. Presented at the (2020)
Völkel, S.T., Schneegass, C., Eiband, M., Buschek, D.: What is “intelligent” in intelligent user interfaces?: a meta-analysis of 25 years of IUI. In: Paternò, F., Oliver, N., Conati, C., Spano, L.D., Tintarev, N. (eds.) IUI 2020: 25th International Conference on Intelligent User Interfaces, Cagliari, Italy, 17–20 March 2020, pp. 477–487. ACM (2020)
Wang, D., Yang, Q., Abdul, A.M., Lim, B.Y.: Designing theory-driven user-centric explainable AI. In: Brewster, S.A., Fitzpatrick, G., Cox, A.L., Kostakos, V. (eds.) Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, 04–09 May 2019, p. 601. ACM (2019)
Wickramasinghe, C.S., Marino, D.L., Grandio, J., Manic, M.: Trustworthy AI development guidelines for human system interaction. In: 13th International Conference on Human System Interaction, HSI 2020, Tokyo, Japan, 6–8 June 2020, pp. 130–136. IEEE (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Weber, T., Hußmann, H., Eiband, M. (2021). Quantifying the Demand for Explainability. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-85616-8_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85615-1
Online ISBN: 978-3-030-85616-8
eBook Packages: Computer ScienceComputer Science (R0)