Abstract
Analysing homophily, i.e. people’s tendency to associate with others with similar social attributes, can help us unravel and better understand user behaviour in social media. In our work, we analyse the impact of homophily in discussions regarding the Citizenship Amendment Act (CAA) on Twitter. The Indian Government enacted CAA to provide relaxation in the citizenship process to religious minorities in three neighbouring countries. While it was lauded by many, it also fuelled backlash amongst some Indian citizens, resulting in the emergence of two distinctive political dispositions regarding this matter. We collected 78,004 Tweets, including 11,794 original Tweets during a period of two weeks shortly after the ruling, and examined ways of potentially reducing homophily and therefore minimise the presence of echo chambers. In particular, we investigated users’ political dispositions and expressed sentiment, and how these two social attributes influence homophilic social ties and interactions. Further, we discuss how our findings can be used in social networks to allow people with diverse viewpoints and emotional attitudes to interact with each other in a positive and constructive manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiello, L.M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., Menczer, F.: Friendship prediction and homophily in social media. ACM Trans. Web (2012). https://doi.org/10.1145/2180861.2180866
Ausserhofer, J., Maireder, A.: National politics on Twitter. Inf. Commun. Soc. 16(3), 291–314 (2013). https://doi.org/10.1080/1369118X.2012.756050
Baek, Y.M., Wojcieszak, M., Delli Carpini, M.X.: Online versus face-to-face deliberation: who? Why? What? With what effects? New Media Soc. (2012). https://doi.org/10.1177/1461444811413191
Barbera, P.: Birds of the same feather tweet together. Bayesian ideal point estimation using Twitter data. SSRN Electron. J. (2013). https://doi.org/10.2139/ssrn.2108098
Barberá, P.: How Social media reduces mass political polarization. Evidence from Germany, Spain, and the U.S. LXXIII Congress of the Midwest Political Science Association (2014)
Bekafigo, M.A., McBride, A.: Who tweets about politics? Soc. Sci. Comput. Rev. 31(5), 625–643 (2013). https://doi.org/10.1177/0894439313490405
Bisgin, H., Agarwal, N., Xu, X.: A study of homophily on social media. World Wide Web (2012). https://doi.org/10.1007/s11280-011-0143-3
Bishop, B., Cushing, R.G.: The Big Sort: Why the Clustering of Like-Minded America is Tearing Us Apart. Mariner Books (2009)
Blei, D.M.: Probabilistic topic models. Commun. ACM (2012). https://doi.org/10.1145/2133806.2133826
Blevins, J.L., Lee, J.J., McCabe, E.E., Edgerton, E.: Tweeting for social justice in #Ferguson: affective discourse in Twitter hashtags. New Media Soc. (2019). https://doi.org/10.1177/1461444819827030
Bonilla, Y., Rosa, J.: #Ferguson: digital protest, hashtag ethnography, and the racial politics of social media in the United States. Am. Ethnol. (2015). https://doi.org/10.1111/amet.12112
Boxell, L., Gentzkow, M., Shapiro, J.: Is the internet causing political polarization? Evidence from demographics. Nat. Bureau Econ. Res. (2017). https://doi.org/10.3386/w23258
Bruns, A., Burgess, J.: The use of twitter hashtags in the formation of ad hoc publics. In: European Consortium for Political Research Conference, Reykjavík, 25–27 August 2011 (2011)
Bruns, A., Moon, B., Paul, A., Münch, F.: Towards a typology of hashtag publics: a large-scale comparative study of user engagement across trending topics. Commun. Res. Pract. (2016). https://doi.org/10.1080/22041451.2016.1155328
Caetano, J.A., Lima, H.S., Santos, M.F., Marques-Neto, H.T.: Using sentiment analysis to define twitter political users’ classes and their homophily during the 2016 American presidential election. J. Internet Serv. Appl. (2018). https://doi.org/10.1186/s13174-018-0089-0
Chen, J., Liu, Y., Zou, M.: User emotion for modeling retweeting behaviors. Neural Netw. (2017). https://doi.org/10.1016/j.neunet.2017.08.006
CNN: Citizenship Amendment Bill explained: India’s controversial bill that excludes Muslims. https://edition.cnn.com/2019/12/11/asia/india-citizenship-amendment-bill-intl-hnk/index.html
Coleman, J.: Relational analysis: the study of social organizations with survey methods. Human Organization (1958). https://doi.org/10.17730/humo.17.4.q5604m676260q8n7
Colleoni, E., Rozza, A., Arvidsson, A.: Echo chamber or public sphere? predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. (2014). https://doi.org/10.1111/jcom.12084
Conover, M., Ratkiewicz, J., Francisco, M.: Political polarization on Twitter. ICWSM (2011). https://doi.org/10.1021/ja202932e
Currarini, S., Jackson, M.O., Pin, P.: An economic model of friendship: homophily, minorities, and segregation. Econometrica 77(4), 1003–1045 (2009). https://doi.org/10.3982/ECTA7528
De Choudhury, M., Sundaram, H., John, A., Seligmann, D.D., Kelliher, A.: “Birds of a Feather”: does user homophily impact information diffusion in social media? (2010). http://arxiv.org/abs/1006.1702
De Salve, A., Guidi, B., Ricci, L., Mori, P.: Discovering homophily in online social networks. Mob. Netw. Appl. 23(6), 1715–1726 (12 (2018). https://doi.org/10.1007/s11036-018-1067-2
Endres, D.M., Schindelin, J.E.: A new metric for probability distributions (2003). https://doi.org/10.1109/TIT.2003.813506
Enli, G.S., Skogerbø, E.: Personalized campaigns in party-centred politics. Inf. Commun. Soc. 16(5), 757–774 (6 (2013). https://doi.org/10.1080/1369118X.2013.782330
Fiore, A.T., Donath, J.S.: Homophily in online dating: when do you like someone like yourself? In: Conference on Human Factors in Computing Systems - Proceedings (2005). https://doi.org/10.1145/1056808.1056919
Fraisier, O., Cabanac, G., Pitarch, Y., Besançon, R., Boughanem, M.: Uncovering like-minded political communities on Twitter. In: ICTIR 2017 - Proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval (2017). https://doi.org/10.1145/3121050.3121091
Gerbaudo, P.: Social media and populism: an elective affinity? Media Cult. Soc. 40(5), 745–753 (2018). https://doi.org/10.1177/0163443718772192
Gerber, E.R., Henry, A.D., Lubell, M.: Political homophily and collaboration in regional planning networks. Am. J. Polit. Sci. (2013). https://doi.org/10.1111/ajps.12011
Gimpel, J.G., Hui, I.S.: Seeking politically compatible neighbors? The role of neighborhood partisan composition in residential sorting. Polit. Geogr. (2015). https://doi.org/10.1016/j.polgeo.2014.11.003
Gonçalves, B., Perra, N., Vespignani, A.: Modeling users’ activity on Twitter networks: validation of Dunbar’s number. PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0022656
Goncalves, J., Kostakos, V., Venkatanathan, J.: Narrowcasting in social media: effects and perceptions. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013 (2013). https://doi.org/10.1145/2492517.2492570
Goncalves, J., Liu, Y., Xiao, B., Chaudhry, S., Hosio, S., Kostakos, V.: Increasing the reach of government social media: A case study in modeling government-citizen interaction on Facebook. Policy Internet (2015). https://doi.org/10.1002/poi3.81
Graells-Garrido, E., Lalmas, M., Quercia, D.: Data portraits: connecting people of opposing views (2013). https://arxiv.org/abs/1311.4658
Gruzd, A., Wellman, B., Takhteyev, Y.: Imagining Twitter as an imagined community. Am. Behav. Sci. (2011). https://doi.org/10.1177/0002764211409378
Guerra, P.C., Souza, R.C., Assunção, R.M., Meira, W.: Antagonism also flows through retweets: the impact of out-of-context quotes in opinion polarization analysis. In: Proceedings of the 11th International Conference on Web and Social Media, ICWSM 2017 (2017)
Hettiachchi, D., Goncalves, J.: Towards effective crowd-powered online content moderation. In: Proceedings of the 31st Australian Conference on Human-Computer-Interaction, pp. 342–346. ACM (2019). https://doi.org/10.1145/3369457.3369491
Himelboim, I., Cameron, K., Sweetser, K.D., Danelo, M., West, K.: Valence-based homophily on Twitter: network analysis of emotions and political talk in the 2012 presidential election. New Media Soc. (2016). https://doi.org/10.1177/1461444814555096
Himelboim, I., Mccreery, S., Smith, M.: Birds of a feather tweet together: integrating network and content analyses to examine cross-ideology exposure on Twitter. J. Comput. Mediat. Commun. (2013). https://doi.org/10.1111/jcc4.12001
Himelboim, I., Smith, M., Shneiderman, B.: Tweeting apart: applying network analysis to detect selective exposure clusters in Twitter. Commun. Methods Meas. (2013). https://doi.org/10.1080/19312458.2013.813922
Hindustan Times: #IndiaDoesNotSupportCAA takes Twitter by storm. https://www.hindustantimes.com/india-news/indiadoesnotsupportcaa-takes-twitter-by-storm/story-SwRmAoj4tEh2DY9OUK0mBJ.html
Huber, G.A., Malhotra, N.: Political homophily in social relationships: evidence from online dating behavior. J. Polit. (2017). https://doi.org/10.1086/687533
Huckfeldt, R.R., Sprague, J.: Citizens, politics and social. Communication (1995). https://doi.org/10.1017/cbo9780511664113
Hui, I.: Who is your preferred neighbor? Partisan residential preferences and neighborhood satisfaction. Am. Politics Res. (2013). https://doi.org/10.1177/1532673X13482573
Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014 (2014)
Ince, J., Rojas, F., Davis, C.A.: The social media response to Black Lives Matter: how Twitter users interact with Black Lives Matter through hashtag use. Ethn. Racial Stud. (2017). https://doi.org/10.1080/01419870.2017.1334931
India Today: Everything you wanted to know about the CAA and NRC. https://www.indiatoday.in/india-today-insight/story/everything-you-wanted-to-know-about-the-caa-and-nrc-1630771-2019-12-23
Iyengar, S., Hahn, K.S.: Red media, blue media: evidence of ideological selectivity in media use. J. Commun. (2009). https://doi.org/10.1111/j.1460-2466.2008.01402.x
Iyengar, S., Sood, G., Lelkes, Y.: Affect, not ideology: a social identity perspective on polarization (2012). https://doi.org/10.1093/poq/nfs038
Iyengar, S., Westwood, S.J.: Fear and loathing across party lines: new evidence on group polarization. Am. J. Polit. Sci. (2015). https://doi.org/10.1111/ajps.12152
Jackson, S.J., Foucault Welles, B.: Hijacking #myNYPD: social media dissent and networked Counterpublics. J. Commun. (2015). https://doi.org/10.1111/jcom.12185
Kang, J.H., Lerman, K.: Using lists to measure homophily on twitter. In: AAAI Workshop - Technical Report (2012)
Lewicka, M.: Confirmation bias. In: Kofta, M., Weary, G., Sedek, G. (eds.) Personal Control in Action, pp. 233–258. Springer, Boston (1998). https://doi.org/10.1007/978-1-4757-2901-6_9
Liu, Y., Venkatanathan, J., Goncalves, J., Karapanos, E., Kostakos, V.: Modeling what friendship patterns on Facebook reveal about personality and social capital. ACM Trans. Comput. Hum. Interact. 21(3),(2014). https://doi.org/10.1145/2617572
Lovejoy, K., Waters, R.D., Saxton, G.D.: Engaging stakeholders through Twitter: how nonprofit organizations are getting more out of 140 characters or less. Public Relat. Rev. (2012). https://doi.org/10.1016/j.pubrev.2012.01.005
Madden, M., Smith, A.: Reputation management and social media (2010)
Manikonda, L., Beigi, G., Liu, H., Kambhampati, S.: Twitter for sparking a movement, reddit for sharing the moment: #Metoo through the lens of social media (2018)
Mason, L.: Uncivil Agreement: How Politics Became Our Identity. University of Chicago Press (2018)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. (2001). https://doi.org/10.1146/annurev.soc.27.1.415
Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (2013). https://doi.org/10.1145/2484028.2484166
Mummolo, J., Nall, C.: Why partisans do not sort: the constraints on political segregation. J. Polit. (2017). https://doi.org/10.1086/687569
Nagulendra, S., Vassileva, J.: Understanding and controlling the filter bubble through interactive visualization: a user study. In: HT 2014 - Proceedings of the 25th ACM Conference on Hypertext and Social Media (2014). https://doi.org/10.1145/2631775.2631811
NPR: India Passes Controversial Citizenship Bill That Would Exclude Muslims. https://www.npr.org/2019/12/11/787220640/india-passes-controversial-citizenship-bill-that-would-exclude-muslims
Nyhan, B., Reifler, J.: When corrections fail: the persistence of political misperceptions. Polit. Behav. (2010). https://doi.org/10.1007/s11109-010-9112-2
Pariser, E.: Filter Bubble (2012). https://doi.org/10.3139/9783446431164
Park, C.S.: Does Twitter motivate involvement in politics? Tweeting, opinion leadership, and political engagement. Comput. Hum. Behav. (2013). https://doi.org/10.1016/j.chb.2013.01.044
Pew Research Center: The Partisan Divide on Political Values Grows Even Wider. Technical report (2017)
Rader, E., Gray, R.: Understanding user beliefs about algorithmic curation in the Facebook news feed. In: Conference on Human Factors in Computing Systems - Proceedings (2015). https://doi.org/10.1145/2702123.2702174
Ranganath, S., Hu, X., Tang, J., Liu, H.: Understanding and identifying advocates for political campaigns on social media. In: WSDM 2016 - Proceedings of the 9th ACM International Conference on Web Search and Data Mining (2016). https://doi.org/10.1145/2835776.2835807
Small, T.A.: What the hashtag? Inf. Commun. Soc. 14(6), 872–895 (2011). https://doi.org/10.1080/1369118X.2011.554572
Stieglitz, S., Dang-Xuan, L.: Emotions and information diffusion in social media - sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. (2013). https://doi.org/10.2753/MIS0742-1222290408
Sunstein, C.R.: Republic.com 2.0 (2009). https://doi.org/10.5860/choice.45-5264
Tajfel, H., Turner, J.: An Integrative Theory of Inter-group Conflict. In: The social psychology of intergroup relations. Oxford University Press (1979)
The Financial Express: ‘India Supports CAA’ : PM Modi launches Twitter campaign to support Citizenship Act. https://www.financialexpress.com/india-news/india-supports-caa-pm-modi-launches-twitter-campaign-to-support-citizenship-act/1807380/
Tsugawa, S., Ohsaki, H.: On the relation between message sentiment and its virality on social media. Soc. Netw. Anal. Min. (2017). https://doi.org/10.1007/s13278-017-0439-0
Venkatanathan, J., Karapanos, E., Kostakos, V., Gonçalves, J.: Network, personality and social capital. In: ACM Web Science Conference, WebSci 2012, pp. 326–329. ACM (2012). https://doi.org/10.1145/2380718.2380760
Venkatanathan, J., Karapanos, E., Kostakos, V., Gonçalves, J.: A network science approach to modelling and predicting empathy. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1395–1400. ACM (2013). https://doi.org/10.1145/2492517.2500295
Wang, F., Orton, K., Wagenseller, P., Xu, K.: Towards understanding community interests with topic modeling. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2815904
Williams, H.T., McMurray, J.R., Kurz, T., Hugo Lambert, F.: Network analysis reveals open forums and echo chambers in social media discussions of climate change. Glob. Environ. Chang. (2015). https://doi.org/10.1016/j.gloenvcha.2015.03.006
Xiong, Y., Cho, M., Boatwright, B.: Hashtag activism and message frames among social movement organizations: semantic network analysis and thematic analysis of Twitter during the #MeToo movement. Public Relat. Rev. (2019). https://doi.org/10.1016/j.pubrev.2018.10.014
Xu, S., Zhou, A.: Hashtag homophily in twitter network: examining a controversial cause-related marketing campaign. Comput. Hum. Behav. (2020). https://doi.org/10.1016/j.chb.2019.08.006
Xu, W.W., Sang, Y., Blasiola, S., Park, H.W.: Predicting opinion leaders in Twitter activism networks: the case of the Wisconsin recall election. Am. Behav. Sci. (2014). https://doi.org/10.1177/0002764214527091
Yang, G.: Narrative agency in hashtag activism: the case of #blacklivesmatter (2016). https://doi.org/10.17645/mac.v4i4.692
Yu, B., Kaufmann, S., Diermeier, D.: Exploring the characteristics of opinion expressions for political opinion classification. In: Proceedings of the 2008 International Conference on Digital Government Research (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Hettiachchi, D., Arora, T., Goncalves, J. (2021). Us Vs. Them – Understanding the Impact of Homophily in Political Discussions on Twitter. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12935. Springer, Cham. https://doi.org/10.1007/978-3-030-85610-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-85610-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85609-0
Online ISBN: 978-3-030-85610-6
eBook Packages: Computer ScienceComputer Science (R0)