Families of Polynomials in the Study of Biochemical Reaction Networks | SpringerLink
Skip to main content

Families of Polynomials in the Study of Biochemical Reaction Networks

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12865))

Included in the following conference series:

  • 719 Accesses

Abstract

The standard mass-action kinetics modeling of the dynamics of biochemical reaction networks gives rise to systems of ordinary polynomial differential equations with (in general unknown) parameters. Attempts to explore the parameter space in order to predict properties of the associated systems challenge the standard current computational tools because even for moderately small networks we need to study families of polynomials with many variables and many parameters. These polynomials have a combinatorial structure that comes from the digraph of reactions. We show that different techniques can be strengthened and applied for biochemical networks with special structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernal, E., Hauenstein, J., Mehta, D, Regan, M., Tang, T.: Machine learning the discriminant locus. Preprint available at arXiv:2006.14078 (2020)

  2. Bihan, F., Giaroli, M., Dickenstein, A.: Lower bounds for positive roots and regions of multistationarity in chemical reaction networks. J. Algebra 542, 367–411 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bihan, F., Santos, F., Spaenlehauer, P.-J.: A polyhedral method for sparse systems with many positive solutions. SIAM J. Appl. Algebra Geom. 2(4), 620–645 (2018)

    Article  MathSciNet  Google Scholar 

  4. Böhm, J., Decker, W., Frühbis-Krüger, A., Pfreundt, F.-J., Rahn, M., Ristau, L.: Towards massively parallel computations in algebraic geometry. Found. Comput. Math. 21(3), 767–806 (2020). https://doi.org/10.1007/s10208-020-09464-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Conradi, C., Feliu, E., Mincheva, M., Wiuf, C.: Identifying parameter regions for multistationarity. PLoS Comput. Biol. 13(10), e1005751 (2017)

    Article  Google Scholar 

  6. Cox, D.A.: Applications of Polynomial Systems, with contributions by C. D’Andrea, A. Dickenstein, J. Hauenstein, H.Schenck, and J. Sidman. Co-publication of the AMS and CBMS (2020)

    Google Scholar 

  7. Dickenstein, A.: Biochemical reaction networks: an invitation for algebraic geometers. In: MCA 2013, Contemporary Mathematics, vol. 656, pp. 65–83 (2016)

    Google Scholar 

  8. Dickenstein, A.: Algebra and geometry in the study of enzymatic cascades. In: Araujo, C., Benkart, G., Praeger, C.E., Tanbay, B. (eds.) World Women in Mathematics 2018. AWMS, vol. 20, pp. 57–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21170-7_2

    Chapter  MATH  Google Scholar 

  9. Dickenstein, A.: Algebraic geometry tools in systems biology. Notices Amer. Math. Soc. 67(11), 1706–1715 (2020)

    Article  MathSciNet  Google Scholar 

  10. Dickenstein, A., Giaroli, M., Pérez Millán, M., Rischter, R.: Detecting the multistationarity structure in enzymatic networks. Manuscript (2021)

    Google Scholar 

  11. Dickenstein, A., Pérez Millán, M., Shiu, A., Tang, X.: Mutistationarity in structured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019)

    Article  MathSciNet  Google Scholar 

  12. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

    Book  MATH  Google Scholar 

  13. Feliu, E., Rendall, A., Wiuf, C.: A proof of unlimited multistability for phosphorylation cycles. Nonlinearity 33(11), 5629 (2020)

    Article  MathSciNet  Google Scholar 

  14. Feliu, E., Wiuf, C.: Simplifying biochemical models with intermediate species. J. R. Soc. Interface 10, 20130484 (2013)

    Article  Google Scholar 

  15. Giaroli, M., Bihan, F., Dickenstein, A.: Regions of multistationarity in cascades of Goldbeter-Koshland loops. J. Math. Biol. 78(4), 1115–1145 (2019)

    Article  MathSciNet  Google Scholar 

  16. Giaroli, M., Rischter, R., Pérez Millán, M., Dickenstein, A.: Parameter regions that give rise to \(2\lfloor \frac{n}{2}\rfloor +1\) positive steady states in the \(n\)-site phosphorylation system. Math. Biosci. Eng. 16(6), 7589–7615 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gross, E., Harrington, H.A., Rosen, Z., Sturmfels, B.: Algebraic systems biology: a case study for the Wnt pathway. Bull. Math. Biol. 78(1), 21–51 (2015). https://doi.org/10.1007/s11538-015-0125-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Nam, K., Gyori, B., Amethyst, S., Bates, D., Gunawardena, J.: Robustness and parameter geography in post-translational modification systems. PLoS Comput. Biol. 16(5), e1007573 (2020)

    Article  Google Scholar 

  19. Patel, A., Shvartsman, S.: Outstanding questions in developmental ERK signaling. Development 145(14), dev143818 (2018)

    Article  Google Scholar 

  20. Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in Buchberger’s algorithm. In: Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, pp. 7575–7585 (2020)

    Google Scholar 

  21. Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems. SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018)

    Article  MathSciNet  Google Scholar 

  22. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012)

    Article  MathSciNet  Google Scholar 

  23. Radulescu, O.: Tropical geometry of biological systems (Invited Talk). In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_1

    Chapter  Google Scholar 

  24. Sadeghimanesh, A., Feliu, E.: The multistationarity structure of networks with intermediates and a binomial core network. Bull. Math. Biol. 81, 2428–2462 (2019)

    Article  MathSciNet  Google Scholar 

  25. Sturmfels, B.: On the number of real roots of a sparse polynomial system. In: Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, pp. 137–143 (1994)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of ANPCyT PICT 2016-0398, UBACYT 20020170100048BA and CONICET PIP 11220150100473, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Dickenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dickenstein, A. (2021). Families of Polynomials in the Study of Biochemical Reaction Networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85165-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85164-4

  • Online ISBN: 978-3-030-85165-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics