Abstract
The standard mass-action kinetics modeling of the dynamics of biochemical reaction networks gives rise to systems of ordinary polynomial differential equations with (in general unknown) parameters. Attempts to explore the parameter space in order to predict properties of the associated systems challenge the standard current computational tools because even for moderately small networks we need to study families of polynomials with many variables and many parameters. These polynomials have a combinatorial structure that comes from the digraph of reactions. We show that different techniques can be strengthened and applied for biochemical networks with special structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernal, E., Hauenstein, J., Mehta, D, Regan, M., Tang, T.: Machine learning the discriminant locus. Preprint available at arXiv:2006.14078 (2020)
Bihan, F., Giaroli, M., Dickenstein, A.: Lower bounds for positive roots and regions of multistationarity in chemical reaction networks. J. Algebra 542, 367–411 (2020)
Bihan, F., Santos, F., Spaenlehauer, P.-J.: A polyhedral method for sparse systems with many positive solutions. SIAM J. Appl. Algebra Geom. 2(4), 620–645 (2018)
Böhm, J., Decker, W., Frühbis-Krüger, A., Pfreundt, F.-J., Rahn, M., Ristau, L.: Towards massively parallel computations in algebraic geometry. Found. Comput. Math. 21(3), 767–806 (2020). https://doi.org/10.1007/s10208-020-09464-x
Conradi, C., Feliu, E., Mincheva, M., Wiuf, C.: Identifying parameter regions for multistationarity. PLoS Comput. Biol. 13(10), e1005751 (2017)
Cox, D.A.: Applications of Polynomial Systems, with contributions by C. D’Andrea, A. Dickenstein, J. Hauenstein, H.Schenck, and J. Sidman. Co-publication of the AMS and CBMS (2020)
Dickenstein, A.: Biochemical reaction networks: an invitation for algebraic geometers. In: MCA 2013, Contemporary Mathematics, vol. 656, pp. 65–83 (2016)
Dickenstein, A.: Algebra and geometry in the study of enzymatic cascades. In: Araujo, C., Benkart, G., Praeger, C.E., Tanbay, B. (eds.) World Women in Mathematics 2018. AWMS, vol. 20, pp. 57–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21170-7_2
Dickenstein, A.: Algebraic geometry tools in systems biology. Notices Amer. Math. Soc. 67(11), 1706–1715 (2020)
Dickenstein, A., Giaroli, M., Pérez Millán, M., Rischter, R.: Detecting the multistationarity structure in enzymatic networks. Manuscript (2021)
Dickenstein, A., Pérez Millán, M., Shiu, A., Tang, X.: Mutistationarity in structured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019)
Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8
Feliu, E., Rendall, A., Wiuf, C.: A proof of unlimited multistability for phosphorylation cycles. Nonlinearity 33(11), 5629 (2020)
Feliu, E., Wiuf, C.: Simplifying biochemical models with intermediate species. J. R. Soc. Interface 10, 20130484 (2013)
Giaroli, M., Bihan, F., Dickenstein, A.: Regions of multistationarity in cascades of Goldbeter-Koshland loops. J. Math. Biol. 78(4), 1115–1145 (2019)
Giaroli, M., Rischter, R., Pérez Millán, M., Dickenstein, A.: Parameter regions that give rise to \(2\lfloor \frac{n}{2}\rfloor +1\) positive steady states in the \(n\)-site phosphorylation system. Math. Biosci. Eng. 16(6), 7589–7615 (2019)
Gross, E., Harrington, H.A., Rosen, Z., Sturmfels, B.: Algebraic systems biology: a case study for the Wnt pathway. Bull. Math. Biol. 78(1), 21–51 (2015). https://doi.org/10.1007/s11538-015-0125-1
Nam, K., Gyori, B., Amethyst, S., Bates, D., Gunawardena, J.: Robustness and parameter geography in post-translational modification systems. PLoS Comput. Biol. 16(5), e1007573 (2020)
Patel, A., Shvartsman, S.: Outstanding questions in developmental ERK signaling. Development 145(14), dev143818 (2018)
Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in Buchberger’s algorithm. In: Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, pp. 7575–7585 (2020)
Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems. SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018)
Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012)
Radulescu, O.: Tropical geometry of biological systems (Invited Talk). In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_1
Sadeghimanesh, A., Feliu, E.: The multistationarity structure of networks with intermediates and a binomial core network. Bull. Math. Biol. 81, 2428–2462 (2019)
Sturmfels, B.: On the number of real roots of a sparse polynomial system. In: Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, pp. 137–143 (1994)
Acknowledgments
We acknowledge the support of ANPCyT PICT 2016-0398, UBACYT 20020170100048BA and CONICET PIP 11220150100473, Argentina.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dickenstein, A. (2021). Families of Polynomials in the Study of Biochemical Reaction Networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-85165-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85164-4
Online ISBN: 978-3-030-85165-1
eBook Packages: Computer ScienceComputer Science (R0)