Abstract
Evidences increasingly have shown that circular RNAs (circRNAs) involve in various key biological processes. Because of the dysregulation and mutation of circRNAs are close associated with many complex human diseases, inferring the associations of circRNA with disease becomes an important step for understanding the pathogenesis, treatment and diagnosis of complex diseases. However, it is costly and time-consuming to verify the circRN-disease association through biological experiments, more and more computational methods have been proposed for inferring potential associations of circRNAs with diseases. In this work, we developed a novel weighted nonnegative matrix factorization algorithm based on multi-source fusion information for circRNA-disease association prediction (WNMFCDA). We firstly constructed the overall similarity of diseases based on semantic information and Gaussian Interaction Profile (GIP) kernel, and calculated the similarity of circRNAs based on GIP kernel. Next, the circRNA-disease adjacency matrix is rebuilt using K nearest neighbor profiles. Finally, nonnegative matrix factorization algorithm is utilized to calculate the scores of each pairs of circRNA and disease. To evaluate the performance of WNMFCDA, five-fold cross-validation is performed. WNMFCDA achieved the AUC value of 0.945, which is higher than other compared methods. In addition, we compared the prediction matrix with original adjacency matrix. These experimental results show that WNMFCDA is an effective algorithm for circRNA-disease association prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Memczak, S., et al.: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013)
Jeck, W.R., Sharpless, N.E.: Detecting and characterizing circular RNAs. Nat. Biotechnol. 32(5), 453–461 (2014)
Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J., Kleinschmidt, A.K.: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. 73(11), 3852–3856 (1976)
Nigro, J.M., et al.: Scrambled exons. Cell 64(3), 607–613 (1991)
Wang, F., Nazarali, A.J., Ji, S.: Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am. J. Cancer Res. 6(6), 1167 (2016)
Wang, Y., et al.: Circular RNAs in human cancer. Mol. Cancer 16(1), 1–8 (2017)
Luo, J., Xiao, Q.: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network. J. Biomed. Inform. 66, 194–203 (2017)
Chen, M., Lu, X., Liao, B., Li, Z., Cai, L., Gu, C.: Uncover miRNA-disease association by exploiting global network similarity. PloS one 11(12), e0166509 (2016)
Fan, C., Lei, X., Pan, Y.: Prioritizing CircRNA-disease associations with convolutional neural network based on multiple similarity feature fusion. Front. Genet. 11, 1042 (2020)
Chen, J., et al.: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388, 208–219 (2017)
Wang, L., You, Z.-H., Huang, Y.-A., Huang, D.-S., Chan, K.C.: An efficient approach based on multi-sources information to predict circRNA–disease associations using deep convolutional neural network. Bioinformatics 36(13), 4038–4046 (2020)
Guo, S., et al.: Microarray expression profile analysis of circular RNAs in pancreatic cancer. Mol. Med. Rep. 17(6), 7661–7671 (2018)
Chen, B., Huang, S.: Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 418, 41–50 (2018)
Shang, X., et al.: Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development. Medicine 95(22), e3811 (2016)
Hao, Q., Han, Y., Xia, W., Wang, Q., Qian, H.: Systematic review and meta-analysis of the utility of circular RNAs as biomarkers of hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol. 2019 (2019)
Wang, L., You, Z.-H., Li, J.-Q., Huang, Y.-A.: IMS-CDA: prediction of CircRNA-disease associations from the integration of multisource similarity information with deep stacked autoencoder model. IEEE Trans. Cybern. (2020)
Lei, X., Fang, Z., Chen, L., Wu, F.-X.: PWCDA: path weighted method for predicting circRNA-disease associations. Int. J. Mol. Sci. 19(11), 3410 (2018)
Chen, Z.-H., You, Z.-H., Guo, Z.-H., Yi, H.-C., Luo, G.-X., Wang, Y.-B.: Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model. Front. Bioeng. Biotech. 8, 338 (2020)
Cui, Z., Gao, Y.-L., Liu, J.-X., Wang, J., Shang, J., Dai, L.-Y.: The computational prediction of drug-disease interactions using the dual-network L 2, 1-CMF method. BMC Bioinf. 20(1), 1–10 (2019)
Guo, Z., You, Z., Wang, Y., Yi, H., Chen, Z.: A learning-based method for LncRNA-disease association identification combing similarity information and rotation forest. iScience 19, 786–795 (2019)
Fu, G., Wang, J., Domeniconi, C., Yu, G.: Matrix factorization-based data fusion for the prediction of lncRNA–disease associations. Bioinformatics 34(9), 1529–1537 (2018)
Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Qiu, Y., Hu, P.-W.: Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genomics 20(13), 1–10 (2019)
Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genet. 10, 90 (2019)
Chen, Z., You, Z., Zhang, W., Wang, Y., Cheng, L., Alghazzawi, D.: Global vectors representation of protein sequences and its application for predicting self-interacting proteins with multi-grained cascade forest model. Genes 10(11), 924 (2019)
Guo, Z., Yi, H., You, Z.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8(8), 866 (2019)
You, Z., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568–85583 (2017)
Chen, M., et al.: A novel information diffusion method based on network consistency for identifying disease related microRNAs. RSC Adv. 8(64), 36675–36690 (2018)
Yan, C., Wang, J., Wu, F.-X.: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations. BMC Bioinf. 19(19), 73–81 (2018)
Wang, L., You, Z.-H., Li, L.-P., Zheng, K., Wang, Y.-B.: Predicting circRNA-disease associations using deep generative adversarial network based on multi-source fusion information. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2019)
Luo, X., Zhou, M., Li, S., You, Z., Xia, Y., Zhu, Q.: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2015)
Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2012)
Wang, M.-N., You, Z.-H., Li, L.-P., Chen, Z.-H., Xie, X.-J.: WGMFDDA: a novel weighted-based graph regularized matrix factorization for predicting drug-disease associations. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020. LNCS (LNAI), vol. 12465, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_47
Zou, L., Chen, X., Wang, Z.J.: Underdetermined joint blind source separation for two datasets based on tensor decomposition. IEEE Signal Process. Lett. 23(5), 673–677 (2016)
Fan, C., Lei, X., Fang, Z., Jiang, Q., Wu, F.-X.: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases. Database 2018 (2018)
Chen, M., Zhang, Y., Li, A., Li, Z., Chen, Z.: Bipartite heterogeneous network method based on co-neighbor for MiRNA-disease association prediction. Front. Genet. 10, 385 (2019)
van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)
Yi, H.-C., You, Z.-H., Wang, M.-N., Guo, Z.-H., Wang, Y.-B., Zhou, J.-R.: RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information. BMC Bioinf. 21(1), 60 (2020)
Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2017)
Yan, C., Wang, J., Ni, P., Lan, W., Wu, F.-X., Pan, Y.: DNRLMF-MDA: predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(1), 233–243 (2017)
You, Z.-H., Lei, Y.-K., Gui, J., Huang, D.-S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744–2751 (2010)
Ezzat, A., Zhao, P., Wu, M., Li, X.-L., Kwoh, C.-K.: Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(3), 646–656 (2016)
Wang, M.-N., You, Z.-H., Wang, L., Li, L.-P., Zheng, K.: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing 424, 236–245 (2020)
Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources. J. Transl. Med. 17(1), 260 (2019)
Zheng, K., You, Z.-H., Li, J.-Q., Wang, L., Guo, Z.-H., Huang, Y.-A.: iCDA-CGR: identification of circRNA-disease associations based on chaos game representation. PLOS Comput. Biol. 16(5), p. e1007872 (2020)
Chen, M., Liao, B., Li, Z.: Global similarity method based on a two-tier random walk for the prediction of microRNA–disease association. Sci. Rep. 8(1), 1–16 (2018)
Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2), 239–248 (2018)
Yan, X., Wang, L., You, Z.-H., Li, L.-P., Zheng, K.: GANCDA: a novel method for predicting circRNA-disease associations based on deep generative adversarial network. Int. J. Data Min. Bioinform. 23(3), 265–283 (2020)
Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)
Wang, M.-N., You, Z.-H., Li, L.-P., Wong, L., Chen, Z.-H., Gan, C.-Z.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions. IEEE Access 8, 37578–37588 (2020)
Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144(1–2), 369–412 (2013). https://doi.org/10.1007/s10107-013-0637-0
Acknowledgements
This work was supported in part by the NSFC Excellent Young Scholars Program, under Grant 61722212, in part by the National Natural Science Foundation of China, under Grant 62002297, in part by the Science and Technology Project of Jiangxi Provincial Department of Education, under Grants GJJ190834, GJJ201605.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, M., Xie, X., You, Z., Wong, L., Li, L., Chen, Z. (2021). Weighted Nonnegative Matrix Factorization Based on Multi-source Fusion Information for Predicting CircRNA-Disease Associations. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-84532-2_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84531-5
Online ISBN: 978-3-030-84532-2
eBook Packages: Computer ScienceComputer Science (R0)