Abstract
Recently, the Deep Learning (DL) research community has focused on developing efficient and highly performing Neural Networks (NN). Meanwhile, the eXplainable AI (XAI) research community has focused on making Machine Learning (ML) and Deep Learning methods interpretable and transparent, seeking explainability. This work is a preliminary study on the applicability of Neural Architecture Search (NAS) (a sub-field of DL looking for automatic design of NN structures) in XAI. We propose Shallow2Deep, an evolutionary NAS algorithm that exploits local variability to restrain opacity of DL-systems through NN architectures simplification. Shallow2Deep effectively reduces NN complexity – therefore their opacity – while reaching state-of-the-art performances. Unlike its competitors, Shallow2Deep promotes variability of localised structures in NN, helping to reduce NN opacity. The proposed work analyses the role of local variability in NN architectures design, presenting experimental results that show how this feature is actually desirable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
By “shallow” (resp. “deep”) layers of a NN we mean the inner layers close to the input (resp. output) neurons.
- 3.
References
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140
Arrieta, A.B., et al.: Explainable explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58(December 2019), 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012
Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 3319–3327. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.354
Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=HylVB3AqYm
Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020). https://doi.org/10.3233/IA-190036
Casale, F.P., Gordon, J., Fusi, N.: Probabilistic neural architecture search. CoRR abs/1902.05116 (2019). http://arxiv.org/abs/1902.05116
Chen, S., Bateni, S., Grandhi, S., Li, X., Liu, C., Yang, W.: DENAS: automated rule generation by knowledge extraction from neural networks. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE 2020: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, 8–13 November 2020, pp. 813–825. ACM (2020). https://doi.org/10.1145/3368089.3409733
Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_6
Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_1
Dosilovic, F.K., Brcic, M., Hlupic, N.: Explainable artificial intelligence: a survey. In: Skala, K., et al. (eds.) 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018, Opatija, Croatia, 21–25 May 2018, pp. 210–215. IEEE (2018). https://doi.org/10.23919/MIPRO.2018.8400040
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1–55:21 (2019). http://jmlr.org/papers/v20/18-598.html
Golovko, V., Egor, M., Brich, A., Sachenko, A.: A shallow convolutional neural network for accurate handwritten digits classification. In: Krasnoproshin, V.V., Ablameyko, S.V. (eds.) PRIP 2016. CCIS, vol. 673, pp. 77–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54220-1_8
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Computi. Surv. 51(5) (2018). https://doi.org/10.1145/3236009
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90
Hecht-Nielsen, R.: Theory of the backpropagation neural network. Neural Netw. 1(Supplement-1), 445–448 (1988). https://doi.org/10.1016/0893-6080(88)90469-8
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). http://arxiv.org/abs/1704.04861
Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. In: Chiappa, S., Calandra, R. (eds.) The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Proceedings of Machine Learning Research, vol. 108, pp. 2907–2916 (2020). http://proceedings.mlr.press/v108/janzing20a.html
Kaya, Y., Hong, S., Dumitras, T.: Shallow-deep networks: understanding and mitigating network overthinking. In: Chaudhuri, K., Salakhutdinov, R. (eds.) 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, CA, USA. Proceedings of Machine Learning Research, vol. 97, pp. 3301–3310 (2019). http://proceedings.mlr.press/v97/kaya19a.html
Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20(4), 985–996 (2018). https://doi.org/10.1109/TMM.2017.2759508
Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018). https://doi.org/10.1145/3236386.3241340
Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=S1eYHoC5FX
Liu, J., Tripathi, S., Kurup, U., Shah, M.: Pruning algorithms to accelerate convolutional neural networks for edge applications: a survey. CoRR abs/2005.04275 (2020). https://arxiv.org/abs/2005.04275
Luo, R., Tan, X., Wang, R., Qin, T., Chen, E., Liu, T.: Neural architecture search with GBDT. CoRR abs/2007.04785 (2020). https://arxiv.org/abs/2007.04785
Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: Schaffer, J.D. (ed.) 3rd International Conference on Genetic Algorithms, Fairfax, VA, USA, pp. 379–384. Morgan Kaufmann, June 1989
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 4293–4302. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.465
Nguyen, A.M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 3387–3395 (2016). https://proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-Abstract.html
Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR abs/1602.03616 (2016). http://arxiv.org/abs/1602.03616
O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR abs/1511.08458 (2015). http://arxiv.org/abs/1511.08458
Peng, S., Ji, F., Lin, Z., Cui, S., Chen, H., Zhang, Y.: MTSS: learn from multiple domain teachers and become a multi-domain dialogue expert. In: AAAI Conference on Artificial Intelligence (AAAI-20 Technical Tracks 5), vol. 34, pp. 8608–8615. AAAI Press (2020). https://doi.org/10.1609/aaai.v34i05.6384
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence (AAAI-19, IAAI-19, EAAI-20), vol. 33, pp. 4780–4789. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33014780
Ren, S., He, K., Girshick, R.B., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476–1481 (2017). https://doi.org/10.1109/TPAMI.2016.2601099
Rolnick, D., Tegmark, M.: The power of deeper networks for expressing natural functions. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April– 3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=SyProzZAW
Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017). https://doi.org/10.1109/TNNLS.2016.2599820
Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). https://doi.org/10.1109/TNN.2002.1000125
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 2820–2828. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00293
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019). http://arxiv.org/abs/1905.11946
Thrun, S.: Extracting rules from artificial neural networks with distributed representations. In: 7th International Conference on Neural Information Processing Systems (NIPS 1994), pp. 505–512. MIT Press (1994)
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): towards medical XAI. CoRR abs/1907.07374 (2019). http://arxiv.org/abs/1907.07374
Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. CoRR abs/1905.01392 (2019). http://arxiv.org/abs/1905.01392
Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 10734–10742. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01099
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747
Yang, Z., et al.: CARS: continuous evolution for efficient neural architecture search. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 1826–1835. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00190
Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-101: towards reproducible neural architecture search. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 7105–7114. PMLR (2019). http://proceedings.mlr.press/v97/ying19a.html
Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs/1506.06579 (2015). http://arxiv.org/abs/1506.06579
Zhang, Q., Wu, Y.N., Zhu, S.: Interpretable convolutional neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018. pp. 8827–8836. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00920
Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 6261–6270. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00642
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations (ICLR 2017). Toulon, France, 24–26 April 2017. https://openreview.net/forum?id=r1Ue8Hcxg
Acknowledgements
This paper has been partially supported by (i) the H2020 project “StairwAI” (G.A. 101017142), and (ii) the CHIST-ERA IV project “EXPECTATION” (G.A. CHIST-ERA-19-XAI-005).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Agiollo, A., Ciatto, G., Omicini, A. (2021). Shallow2Deep: Restraining Neural Networks Opacity Through Neural Architecture Search. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds) Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2021. Lecture Notes in Computer Science(), vol 12688. Springer, Cham. https://doi.org/10.1007/978-3-030-82017-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-82017-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82016-9
Online ISBN: 978-3-030-82017-6
eBook Packages: Computer ScienceComputer Science (R0)