Abstract
Moving Object Segmentation (MOS) is an important topic in computer vision. MOS becomes a challenging problem in the presence of dynamic background and moving camera videos such as Pan–Tilt–Zoom cameras (PTZ). The MOS problem has been solved using unsupervised and supervised learning strategies. Recently, new ideas to solve MOS using semi-supervised learning have emerged inspired from the theory of Graph Signal Processing (GSP). These new algorithms are usually composed of several steps including: segmentation, background initialization, features extraction, graph construction, graph signal sampling, and a semi-supervised learning algorithm inspired from reconstruction of graph signals. In this work, we summarize and explain the theoretical foundations as well as the technical details of MOS using GPS. We also propose two architectures for MOS using semi-supervised learning and a new evaluation procedure for GSP-based MOS algorithms. GSP-based algorithms are evaluated in the Change Detection (CDNet2014) dataset for MOS, outperforming numerous State-Of-The-Art (SOTA) methods in several challenging conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Anis, A., Gadde, A., Ortega, A.: Efficient sampling set selection for bandlimited graph signals using graph spectral proxies. IEEE Trans. Signal Process. 64(14), 3775–3789 (2016)
Bianco, S., Ciocca, G., Schettini, R.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)
Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)
Bouwmans, T., El Baf, F., Vachon, B.: Background modeling using mixture of Gaussians for foreground detection-a survey. Recent Patents Comput. Sci. 1(3), 219–237 (2008)
Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014)
Bouwmans, T., et al.: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017)
Bouwmans, T., et al.: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw. 117, 8–66 (2019)
Braham, M., Piérard, S., Van Droogenbroeck, M.: Semantic background subtraction. In: IEEE ICIP (2017)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1483–1498 (2019)
Chatfield, K., et al.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)
Chen, L.C., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, S., et al.: Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)
Danelljan, M., et al.: ECO: efficient convolution operators for tracking. In: IEEE CVPR (2017)
Du, S.S., et al.: How many samples are needed to estimate a convolutional neural network? In: NeurIPS (2018)
Egilmez, H.E., Ortega, A.: Spectral anomaly detection using graph-based filtering for wireless sensor networks. In: IEEE ICASSP (2014)
Garcia-Garcia, B., Bouwmans, T., Silva, A.J.: Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)
Giraldo, J.H., Bouwmans, T.: GraphBGS: background subtraction via recovery of graph signals. In: ICPR (2021)
Giraldo, J.H., Bouwmans, T.: On the minimization of Sobolev norms of time-varying graph signals: estimation of new Coronavirus disease 2019 cases. In: IEEE MLSP (2020)
Giraldo, J.H., Bouwmans, T.: Semi-supervised background subtraction of unseen videos: minimization of the total variation of graph signals. In: IEEE ICIP (2020)
Giraldo, J.H., Javed, S., Bouwmans, T.: Graph moving object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Giraldo, J.H., Le, H.T., Bouwmans, T.: Deep learning based background subtraction: a systematic survey. In: Handbook of Pattern Recognition and Computer Vision, p. 51 (2020)
He, K., et al.: Deep residual learning for image recognition. In: IEEE CVPR (2016)
He, K., et al.: Mask R-CNN. In: IEEE CVPR (2017)
Javed, S., et al.: Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Trans. Circuit Syst. Video Technol. 28(6), 1315–1329 (2016)
Javed, S., et al.: Background-foreground modeling based on spatiotemporal sparse subspace clustering. IEEE Trans. Image Process. 26(12), 5840–5854 (2017)
Javed, S., et al.: Robust structural low-rank tracking. IEEE Trans. Image Process. 29, 4390–4405 (2020)
Javed, S., et al.: Moving object detection in complex scene using spatiotemporal structured-sparse RPCA. IEEE Trans. Image Process. 28(2), 1007–1022 (2018)
Jung, A., et al.: Semi-supervised learning in network-structured data via total variation minimization. IEEE Trans. Signal Process. 67(24), 6256–6269 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lim, L.A., Keles, H.Y.: Learning multi-scale features for foreground segmentation. Pattern Anal. Appl. 23(3), 1369–1380 (2020)
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision (1981)
Mandal, M., Vipparthi, S.K.: Scene independency matters: an empirical study of scene dependent and scene independent evaluation for CNN-based change detection. IEEE Trans. Intell. Transp. Syst., 1–14 (2020)
Mandal, M., et al.: 3DCD: scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos. IEEE Trans. Image Process. 30, 546–558 (2020)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 7, 971–987 (2002)
Ortega, A., et al.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)
Pang, J., et al.: Optimal graph Laplacian regularization for natural image denoising. In: IEEE ICASSP (2015)
Parada-Mayorga, A., et al.: Blue-noise sampling on graphs. IEEE Trans. Signal Inf. Process. Netw. 5(3), 554–569 (2019)
Parada-Mayorga, A., et al.: Sampling of graph signals with blue noise dithering. In: IEEE DSW (2019)
Perazzi, F., et al.: A benchmark dataset and evaluation methodology for video object segmentation. In: IEEE CVPR (2016)
Perraudin, N., et al.: UNLocBoX a Matlab convex optimization toolbox using proximal splitting methods. arXiv preprint arXiv:1402.0779
Perraudin, N., et al.: GSPBOX: a toolbox for signal processing on graphs. arXiv preprint arXiv:1408.5781 (2014)
Pesenson, I.: Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Amer. Math. Soc. 360(10), 5603–5627 (2008)
Pesenson, I.: Variational splines and Paley-Wiener spaces on combinatorial graphs. Constructive Approximation 29(1), 1–21 (2009)
Romero, D., Ma, M., Giannakis, G.B.: Kernel-based reconstruction of graph signals. IEEE Trans. Signal Process. 65(3), 764–778 (2016)
Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)
Shuman, D.I., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)
St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2014)
Sultana, M., et al.: Unsupervised deep context prediction for background estimation and foreground segmentation. Mach. Vis. Appl. 30(3), 375–395 (2019)
Tezcan, O., Ishwar, P., Konrad, J.: BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos. In: IEEE WACV (2020)
Thanou, D., Chou, P.A., Frossard, P.: Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans. Image Process. 25(4), 1765–1778 (2016)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-2440-0
Wang, Y., et al.: CDnet 2014: an expanded change detection benchmark dataset. In: IEEE CVPR-W (2014)
Xie, S., et al.: Aggregated residual transformations for deep neural networks. In: IEEE CVPR (2017)
Yang, F., et al.: Superpixel segmentation with fully convolutional networks. In: IEEE CVPR (2020)
Zhang, C., Florencio, D., Loop, C.: Point cloud attribute compression with graph transform. In: IEEE ICIP (2014)
Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Giraldo, J.H., Javed, S., Sultana, M., Jung, S.K., Bouwmans, T. (2021). The Emerging Field of Graph Signal Processing for Moving Object Segmentation. In: Jeong, H., Sumi, K. (eds) Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-81638-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81637-7
Online ISBN: 978-3-030-81638-4
eBook Packages: Computer ScienceComputer Science (R0)