Abstract
The paper introduces (and investigates) a novel methodology for improving performances of detection of visual objects (keypoints are selected as objects for the feasibility study). Using any (i.e. either hand-crafted or deep-learned) detector in conjunction with the selected descriptor, we rank the extracted keypoints using stability of their descriptors. Stability is defined by the magnitude of partial derivatives of the descriptor over parameters determining deformations of the original images. In practice, discrete approximations of the derivatives are used. We have preliminarily verified that by using the keypoints top-ranked by the proposed criterion (i.e. those with least-sensitive descriptors) instead of keypoints top-ranked by the standard prominence criteria, performances of matching (we primarily focus on precision) can be substantially improved. The results have been obtained using a popular benchmark set of images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: Kaze features. In: Computer Vision—ECCV 2012, pp. 214–227 (2012)
Barroso-Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key.net: keypoint detection by handcrafted and learned cnn filters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Clady, X., Ieng, S.H., Benosman, R.: Asynchronous event-based corner detection and matching. Neural Netw. 66, 91–106 (2015)
Dai, Z., Huang, X., Chen, W., He, L., Zhang, H.: A comparison of CNN-based and hand-crafted keypoint descriptors. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2399–2404 (2019)
Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: CVPR 2011, pp. 473–480 (2011)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019)
Komorowski, J., Czarnota, K., Trzcinski, T., Dabala, L., Lynen, S.: Interest point detectors stability evaluation on apolloscape dataset. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 27, 1615–1630 (2005)
Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)
Nascimento, J.C., Marques, J.S.: Performance evaluation of object detection algorithms for video surveillance. IEEE Trans. Multimed. 8(4), 761–774 (2006)
Ono, Y., Trulls, E., Fua, P., Kwang, M.Y.: LF-NET: learning local features from images. In: 32nd International Conference on Neural Information Processing (NIPS 2018), pp. 6237–6247 (2018)
Prasad, D.K.: Survey of the problem of object detection in real images. Int. J. Image Process. 6(6), 441–466 (2012)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7263–7271 (2017)
Revaud, J., et al.: R2D2: repeatable and reliable detector and descriptor (2019). http://arxiv.org/abs/1906.06195
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:Computer Vision—ECCV 2006, pp. 430–443 (2006)
Śluzek, A.: Descriptor-driven keypoint detection. In: 2018 Digital Image Computing:Techniques and Applications (DICTA), pp. 1–8 (2018)
Śluzek, A.: Improving performances of mser features in matching and retrievaltasks. LNCS (ECCV 2016 Workshops) 9915, pp. 759–770(2016)
Ullah, I., et al.: A brief survey of visual saliency detection. Multimed. Tools Appl. 79, 34605–34645 (2020)
Yi, K.M., Fortuny, E.T., Lepetit, V., Fua, P.: Lift: learned invariant feature transform. In: Proceedings of the 14th European Conference on ECCV 2016), vol. 2, pp. 467–483 (2016)
Zhang, X., Yu, F.X., Karaman, S., Chang, S.: Learning discriminative and transformation covariant local feature detectors. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4923–4931 (2017)
Zheng, L., Yang, Y., Tian, Q.: Sift meets CNN: a decade survey of instance retrieval. IEEE Trans. PAMI 40(5), 1224–1244 (2018)
Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey (2019). http://arxiv.org/abs/1905.05055
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Śluzek, A. (2022). Description-Based Ranking of Visual Instances: Feasibility Study for Keypoints. In: Choraś, M., Choraś, R.S., Kurzyński, M., Trajdos, P., Pejaś, J., Hyla, T. (eds) Progress in Image Processing, Pattern Recognition and Communication Systems. CORES IP&C ACS 2021 2021 2021. Lecture Notes in Networks and Systems, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-81523-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-81523-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81522-6
Online ISBN: 978-3-030-81523-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)