Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 | SpringerLink
Skip to main content

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2021 (SAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12831))

Abstract

Modal logic S5 is useful in various applications of artificial intelligence. In recent years, the advance in solving the satisfiability problem of S5 has allowed many large S5 formulas to be solved within a few minutes. In this context, a new challenge arises: how to generate a minimal S5 Kripke model efficiently? The minimal model generation can be useful for tasks such as model checking and debugging of logical specifications. This paper presents several efficient SAT-based methods and provides a symmetry-breaking technique for the minimal model generation problem of S5. Extensive experiments demonstrate that our methods are good at tackling many large instances and achieve state-of-the-art performances. We find that a minimal model of a large S5 formula is usually very small, and we analyze this phenomenon via a graph model. Due to this characteristic, our incremental method performs best in most cases, and we believe that it is more suitable for minimal S5 Kripke model generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    S5cheetah and benchmarks: http://www.square16.org/tools/s5cheetah/.

  2. 2.

    https://maxsat-evaluations.github.io/2019/rankings.html.

  3. 3.

    S52SAT 2.0. is not available at moment. So, we compare with S52SAT 1.0 as reference. http://www.cril.univ-artois.fr/%7emontmirail/s52SAT/v2/index.html.

  4. 4.

    http://www.iltp.de/qmltp/.

References

  1. Abate, P., Goré, R., Widmann, F.: Cut-free single-pass tableaux for the logic of common knowledge. In: Workshop on Agents and Deduction at TABLEAUX. vol. 2007. Citeseer (2007)

    Google Scholar 

  2. Aguilera, J.P., Fernández-Duque, D.: Verification logic: an arithmetical interpretation for negative introspection. In: Advances in Modal Logic 11, proceedings of the 11th conference on Advances in Modal Logic, held in Budapest, Hungary, August 30 - September 2, 2016. pp. 1–20 (2016)

    Google Scholar 

  3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 399–404 (2009)

    Google Scholar 

  4. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propositional modal logics k, kt, S4. J. Autom. Reason. 24(3), 297–317 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bienvenu, M., Fargier, H., Marquis, P.: Knowledge compilation in the modal logic S5. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010 (2010)

    Google Scholar 

  6. Caridroit, T., Lagniez, J., Berre, D.L., de Lima, T., Montmirail, V.: A SAT-based approach for solving the modal logic S5-satisfiability problem. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA. pp. 3864–3870 (2017)

    Google Scholar 

  7. Chu, Y., Luo, C., Cai, S., You, H.: Empirical investigation of stochastic local search for maximum satisfiability. Frontiers Comput. Sci. 13(1), 86–98 (2019). https://doi.org/10.1007/s11704-018-7107-z

    Article  Google Scholar 

  8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT press, Cambridge (2004)

    Google Scholar 

  9. Fitting, M.: A simple propositional S5 tableau system. Ann. Pure Appl. Log. 96(1–3), 107–115 (1999)

    Article  Google Scholar 

  10. Fitting, M.: Modality and databases. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 19–39. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086_2

    Chapter  Google Scholar 

  11. Goranko, V., Otto, M.: Model theory of modal logic. In: Handbook of Modal Logic, pp. 249–329 (2007)

    Google Scholar 

  12. Grossi, D., Rey, S.: Credulous acceptability, poison games and modal logic. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, Montreal, QC, Canada, 13–17 May 2019, pp. 1994–1996 (2019)

    Google Scholar 

  13. Hella, L., et al.: Weak models of distributed computing, with connections to modal logic. Distrib. Comput. 28(1), 31–53 (2013). https://doi.org/10.1007/s00446-013-0202-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, P., Liu, M., Wang, P., Zhang, W., Ma, F., Zhang, J.: Solving the satisfiability problem of modal logic S5 guided by graph coloring. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019. pp. 1093–1100 (2019)

    Google Scholar 

  15. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient maxsat solver. J. Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

    MathSciNet  Google Scholar 

  16. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

    Article  MathSciNet  Google Scholar 

  17. Lagniez, J.-M., Le Berre, D., de Lima, T., Montmirail, V.: An assumption-based approach for solving the minimal S5-satisfiability problem. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_1

    Chapter  Google Scholar 

  18. Leuştean, I., Moangă, N., Şerbănuţă, T.F.: Operational semantics and program verification using many-sorted hybrid modal logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 446–476. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_25

    Chapter  MATH  Google Scholar 

  19. Massacci, F.: Design and results of the tableaux-99 non-classical (Modal) systems comparison. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 14–18. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48754-9_2

    Chapter  Google Scholar 

  20. Niveau, A., Zanuttini, B.: Efficient representations for the modal logic S5. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, 9–15 July 2016. pp. 1223–1229 (2016)

    Google Scholar 

  21. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model generation. Electron. Notes Theor. Comput. Sci. 278, 159–172 (2011)

    Article  MathSciNet  Google Scholar 

  22. Papacchini, F., Schmidt, R.A.: Terminating minimal model generation procedures for propositional modal logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 381–395. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_30

    Chapter  Google Scholar 

  23. Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random modal formulae for testing decision procedures. J. Artif. Intell. Res. 18, 351–389 (2003)

    Article  MathSciNet  Google Scholar 

  24. Soto, M., Rossi, A., Sevaux, M.: Three new upper bounds on the chromatic number. Discret. Appl. Math. 159(18), 2281–2289 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wan, H., Yang, R., Fang, L., Liu, Y., Xu, H.: A complete epistemic planner without the epistemic closed world assumption. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015. pp. 3257–3263 (2015)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (NSFC) under grant No.61972384 and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences under grant number QYZDJ-SSW-JSC036. Feifei Ma is also supported by the Youth Innovation Promotion Association CAS under grant No. Y202034. The authors would like to thank the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feifei Ma or Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, P., Li, R., Liu, M., Ma, F., Zhang, J. (2021). Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80223-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80222-6

  • Online ISBN: 978-3-030-80223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics