Distributed Data Compression for Edge Devices | SpringerLink
Skip to main content

Abstract

In this paper, we elaborate on the issue of reliable storage and efficient communication of large quantities of data in the absence of continuous connectivity. We illustrate how advanced machine learning techniques can run locally at the edge, in the context of data compression related to special-purpose vehicles. Two different data compression techniques are compared by calculating general compression metrics, e.g., compression rate and root mean-squared error, while also validating the results using an event detection algorithm. These techniques exploit real-world usage data captured in the field using the I-HUMS platform provided by our industrial partner ILIAS solutions Inc.

This work is supported by the Brussels-capital region - Innoviris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 17159
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ilias-solutions.com.

References

  1. Bristol, E.: Swing door trending: adaptive trend recording. In: ISA National Conference Proceedings, pp. 749–753 (1990)

    Google Scholar 

  2. Cui, M., Zhang, J., Florita, A.R., Hodge, B., Ke, D., Sun, Y.: An optimized swinging door algorithm for wind power ramp event detection. In: 2015 IEEE Power Energy Society General Meeting, pp. 1–5 (2015)

    Google Scholar 

  3. Cui, M., Zhang, J., Florita, A.R., Hodge, B., Ke, D., Sun, Y.: Solar power ramp events detection using an optimized swinging door algorithm. In: Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2015)

    Google Scholar 

  4. David Arias Correa, J., Sandro Roschildt Pinto, A., Montez, C., Leão, E.: Swinging door trending compression algorithm for IoT environments. In: Anais Estendidos do Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC), pp. 143–148. Sociedade Brasileira de Computação - SBC, November 2019

    Google Scholar 

  5. Elmeleegy, H., Elmagarmid, A., Cecchet, E., Aref, W., Zwaenepoel, W.: Online piece-wise linear approximation of numerical streams with precision guarantees. Proc. VLDB Endowment 2, 145–156 (2009)

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80 (1997)

    Google Scholar 

  7. Hsu, D.: Time Series Compression Based on Adaptive Piecewise Recurrent Autoencoder, August 2017

    Google Scholar 

  8. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013)

    Google Scholar 

  10. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality guarantees. In: Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405), pp. 429–440 (2003)

    Google Scholar 

  11. Ma, T., Hempel, M., Peng, D., Sharif, H.: A survey of energy-efficient compression and communication techniques for multimedia in resource constrained systems. IEEE Commun. Surv. Tutorials 15(3), 963–972 (2013)

    Article  Google Scholar 

  12. Papaioannou, T.G., Riahi, M., Aberer, K.: Towards online multi-model approximation of time series. In: 2011 IEEE 12th International Conference on Mobile Data Management, vol. 1, pp. 33–38 (2011)

    Google Scholar 

  13. Ringwelski, M., Renner, C., Reinhardt, A., Weigel, A., Turau, V.: The Hitchhiker’s guide to choosing the compression algorithm for your smart meter data. In: Proceedings of the 2nd IEEE ENERGYCON Conference and Exhibition/ICT for Energy Symposium (ENERGYCON), pp. 998–1003 (2012)

    Google Scholar 

  14. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 265–278 (2006)

    Google Scholar 

  15. Salomon, D.: A Concise Introduction to Data Compression. Undergraduate Topics in Computer Science (2008)

    Google Scholar 

  16. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404 (2020)

    Google Scholar 

  17. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Van Vaerenbergh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Vaerenbergh, K., Tourwé, T. (2021). Distributed Data Compression for Edge Devices. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79157-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79156-8

  • Online ISBN: 978-3-030-79157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics