Using the Universal Atrial Coordinate System for MRI and Electroanatomic Data Registration in Patient-Specific Left Atrial Model Construction and Simulation | SpringerLink
Skip to main content

Using the Universal Atrial Coordinate System for MRI and Electroanatomic Data Registration in Patient-Specific Left Atrial Model Construction and Simulation

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

Current biophysical atrial models for investigating atrial fibrillation (AF) mechanisms and treatment approaches use imaging data to define patient-specific anatomy. Electrophysiology of the models can be calibrated using invasive electrical data collected using electroanatomic mapping (EAM) systems. However, these EAM data are typically only available after the catheter ablation procedure has begun, which makes it challenging to use personalised biophysical simulations for informing procedures. In this study, we first aimed to derive a mapping between LGE-MRI intensity and EAM conduction velocity (CV) for calibrating patient-specific left atrial electrophysiology models. Second, we investigated the functional effects of this calibration on simulated arrhythmia properties. To achieve this, we used the Universal Atrial Coordinate (UAC) system to register LGE-MRI and EAM meshes for ten patients. We then post-processed these data to investigate the relationship between LGE-MRI intensities and EAM CV. Mean atrial CV decreased from 0.81 ± 0.31 m/s to 0.58 ± 0.18 m/s as LGE-MRI image intensity ratio (IIR) increased from IIR < 0.9 to 1.6 ≤ IIR. The relationship between IIR and CV was used to calibrate conductivity for a cohort of 50 patient-specific models constructed from LGE-MRI data. This calibration increased the mean number of phase singularities during simulated arrhythmia from 2.67 ± 0.94 to 5.15 ± 2.60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, P.M., et al.: Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879 (2019). https://doi.org/10.1038/s41551-019-0437-9

    Article  Google Scholar 

  2. Roney, C.H., et al.: In silico comparison of left atrial ablation techniques that target the anatomical, structural, and electrical substrates of atrial fibrillation. Front. Physiol. 11 (2020). https://doi.org/10.3389/fphys.2020.572874

  3. Lalani, G.G., Schricker, A., Gibson, M., Rostamian, A., Krummen, D.E., Narayan, S.M.: Atrial conduction slows immediately before the onset of human atrial fibrillation: a bi-atrial contact mapping study of transitions to atrial fibrillation. J. Am. Coll. Cardiol. 59, 595–606 (2012). https://doi.org/10.1016/j.jacc.2011.10.879

    Article  Google Scholar 

  4. Corrado, C., Williams, S., Karim, R., Plank, G., O’Neill, M., Niederer, S.: A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements. Med. Image Anal. 47, 153–163 (2018). https://doi.org/10.1016/j.media.2018.04.005

    Article  Google Scholar 

  5. Fukumoto, K., et al.: Association of left atrial local conduction velocity with late gadolinium enhancement on cardiac magnetic resonance in patients with atrial fibrillation. Circ. Arrhythmia Electrophysiol. 9, 1–7 (2016). https://doi.org/10.1161/CIRCEP.115.002897

    Article  Google Scholar 

  6. Ali, R.L., et al.: Left atrial enhancement correlates with myocardial conduction velocity in patients with persistent atrial fibrillation. Front. Physiol. (2020). https://doi.org/10.3389/fphys.2020.570203

  7. Caixal, G., et al.: Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. EP Eur. 23, 380–388 (2021). https://doi.org/10.1093/europace/euaa313

    Article  Google Scholar 

  8. Haissaguerre, M., et al.: Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J. Physiol. 594, 2387–2398 (2016). https://doi.org/10.1113/JP270617

    Article  Google Scholar 

  9. Roney, C.H., et al.: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes. Med. Image Anal. 55, 65–75 (2019). https://doi.org/10.1016/j.media.2019.04.004

    Article  Google Scholar 

  10. Sim, I., et al.: Reproducibility of Atrial Fibrosis Assessment Using CMR Imaging and an Open Source Platform. JACC Cardiovasc. Imaging 12, 65–75 (2019). https://doi.org/10.1016/j.jcmg.2019.03.027

    Article  Google Scholar 

  11. Sim, I., et al.: Reproducibility of atrial fibrosis assessment using CMR imaging and an open source platform. JACC Cardiovasc. Imaging 12, 2076–2077 (2019). https://doi.org/10.1016/j.jcmg.2019.03.027

    Article  Google Scholar 

  12. Razeghi, O., et al.: CemrgApp: an interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research. SoftwareX 12, (2020). https://doi.org/10.1016/j.softx.2020.100570

    Article  Google Scholar 

  13. Roney, C.H., et al.: Constructing a human atrial fibre atlas. Ann. Biomed. Eng. (2020). https://doi.org/10.1007/s10439-020-02525-w

    Article  Google Scholar 

  14. Williams, S.E., et al.: OpenEP: a cross-platform electroanatomic mapping data format and analysis platform for electrophysiology research. Front. Physiol. 88, 105–121 (2021)

    Google Scholar 

  15. Roney, C.H., et al.: An automated algorithm for determining conduction velocity, wavefront direction and origin of focal cardiac arrhythmias using a multipolar catheter. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1583–1586. IEEE (2014)

    Google Scholar 

  16. Roney, C.H., et al.: A technique for measuring anisotropy in atrial conduction to estimate conduction velocity and atrial fibre direction. Comput. Biol. Med. 104, 278–290 (2019). https://doi.org/10.1016/j.compbiomed.2018.10.019

    Article  Google Scholar 

  17. Khurram, I.M., et al.: Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis. Hear Rhythm 11, 85–92 (2014). https://doi.org/10.1016/j.hrthm.2013.10.007

    Article  Google Scholar 

  18. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc. Res. 42, 477–489 (1999)

    Article  Google Scholar 

  19. Bayer, J.D., Roney, C.H., Pashaei, A., Jaïs, P., Vigmond, E.J.: Novel radiofrequency ablation strategies for terminating atrial fibrillation in the left atrium: a simulation study. Front. Physiol. 7, 108 (2016). https://doi.org/10.3389/fphys.2016.00108

    Article  Google Scholar 

  20. Roney, C.H., et al.: A technique for measuring anisotropy in atrial conduction to estimate conduction velocity and atrial fibre direction. Comput. Biol. Med. 104, 278–290 (2019). https://doi.org/10.1016/j.compbiomed.2018.10.019

    Article  Google Scholar 

  21. Roney, C.H., et al.: Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace (2016). https://doi.org/10.1093/europace/euw365

    Article  Google Scholar 

  22. Plank, G., et al.: The openCARP Simulation Environment for Cardiac Electrophysiology. bioRxiv, 1–22 (2021). https://doi.org/10.1101/2021.03.01.433036

  23. Benito, E.M., et al.: Preferential regional distribution of atrial fibrosis in posterior wall around left inferior pulmonary vein as identified by late gadolinium enhancement cardiac magnetic resonance in patients with atrial fibrillation. Europace 20, 1959–1965 (2018). https://doi.org/10.1093/europace/euy095

    Article  Google Scholar 

  24. Grandits, T., Pezzuto, S., Lubrecht, Jolijn M., Pock, T., Plank, G., Krause, R.: PIEMAP: Personalized Inverse Eikonal Model from Cardiac Electro-Anatomical Maps. In: Puyol Anton, E., Pop, M., Sermesant, M., Campello, V., Lalande, A., Lekadir, K., Suinesiaputra, A., Camara, O., Young, A. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 76–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_8

    Chapter  Google Scholar 

Download references

Acknowledgement

CR is funded by an MRC Skills Development Fellowship (MR/S015086/1). SN acknowledges support from the EPSRC (EP/M012492/1, NS/A000049/1, and EP/P01268X/1), the British Heart Foundation (PG/15/91/31812, PG/13/37/30280), and Kings Health Partners London National Institute for Health Research (NIHR) Biomedical Research Centre. SW acknowledges a British Heart Foundation Fellowship (FS 20/26/34952). This work was supported by the Wellcome/EPSRC Centre for Medical Engineering (WT 203148/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline H. Roney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beach, M. et al. (2021). Using the Universal Atrial Coordinate System for MRI and Electroanatomic Data Registration in Patient-Specific Left Atrial Model Construction and Simulation. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics