Partial Matching in the Space of Varifolds | SpringerLink
Skip to main content

Partial Matching in the Space of Varifolds

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Abstract

In computer vision and medical imaging, the problem of matching structures finds numerous applications from automatic annotation to data reconstruction. The data however, while corresponding to the same anatomy, are often very different in topology or shape and might only partially match each other. We introduce a new asymmetric data dissimilarity term for various geometric shapes like sets of curves or surfaces. This term is based on the Varifold shape representation and assesses the embedding of a shape into another one without relying on correspondences between points. It is designed as data attachment for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, allowing to compute meaningful deformation of one shape onto a subset of the other. Registrations are illustrated on sets of synthetic 3D curves, real vascular trees and livers’ surfaces from two different modalities: Computed Tomography (CT) and Cone Beam Computed Tomography (CBCT). All experiments show that this data dissimilarity term leads to coherent partial matching despite the topological differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/plantonsanti/PartialMatchingVarifolds.

References

  1. Aiger, D., Mitra, N., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: 35th International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2008), vol. 27, August 2008. https://doi.org/10.1145/1399504.1360684

  2. Bashiri, F.S., Baghaie, A., Rostami, R., Yu, Z., D’Souza, R.: Multi-modal medical image registration with full or partial data: a manifold learning approach. J. Imaging 5, 5 (2018). https://doi.org/10.3390/jimaging5010005

    Article  Google Scholar 

  3. Beg, M.F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa

    Article  Google Scholar 

  4. Benseghir, T., Malandain, G., Vaillant, R.: Iterative closest curve: a framework for curvilinear structure registration application to 2D/3D coronary arteries registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 179–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_23

    Chapter  Google Scholar 

  5. Bronstein, A., Bronstein, M., Bruckstein, A., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84, 163–183 (2009). https://doi.org/10.1007/s11263-008-0147-3

    Article  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. 103(5), 1168–1172 (2006). https://doi.org/10.1073/pnas.0508601103

    Article  MathSciNet  MATH  Google Scholar 

  7. Charlier, B., Charon, N., Trouvé, A.: The Fshape framework for the variability analysis of functional shapes. Found. Comput. Math. 17(2), 287–357 (2015). https://doi.org/10.1007/s10208-015-9288-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Charlier, B., Feydy, J., Glaunès, J.A., Collin, F.D., Durif, G.: Kernel operations on the GPU, with Autodiff, without memory overflows. J. Mach. Learn. Res. 22(74), 1–6 (2021). http://jmlr.org/papers/v22/20-275.html

  9. Charon, N., Charlier, B., Glaunèss, J., Gori, P., Roussillon, P.: 12 - fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles, pp. 441–477 (2020). https://doi.org/10.1016/B978-0-12-814725-2.00021-2

  10. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013). https://doi.org/10.1137/130918885

    Article  MathSciNet  MATH  Google Scholar 

  11. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5(4), 281–99 (2001)

    Article  Google Scholar 

  12. Feragen, A., Petersen, J., de Bruijne, M., et al.: Geodesic atlas-based labeling of anatomical trees: application and evaluation on airways extracted from CT. IEEE Trans. Med. Imaging 34, 1212–1226 (2015)

    Article  Google Scholar 

  13. Feydy, J., Charlier, B., Vialard, F.-X., Peyré, G.: Optimal transport for diffeomorphic registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 291–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_34

    Chapter  Google Scholar 

  14. Glaunès, J.: Transport par difféomorphismes de points, demesures et de courants pour la comparaison de formes et l’anatomie numérique (2005)

    Google Scholar 

  15. Halimi, O., Litany, O., Rodolà, E.R., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence, pp. 4365–4374 (2019). https://doi.org/10.1109/CVPR.2019.00450

  16. Halimi, O., et al.: The whole is greater than the sum of its nonrigid parts. CoRR abs/2001.09650 (2020)

    Google Scholar 

  17. van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. In: Computer Graphics Forum (CGF), September 2013. https://doi.org/10.1111/cgf.12084

  18. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011). https://doi.org/10.1111/j.1467-8659.2011.01884.x

    Article  Google Scholar 

  19. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds July 2017

    Google Scholar 

  20. Kaltenmark, I., Trouvé, A.: Estimation of a growth development with partial diffeomorphic mappings. Q. Appl. Math. 77, 227–267 (2018)

    Article  MathSciNet  Google Scholar 

  21. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4) (2012). https://doi.org/10.1145/2185520.2185526

  23. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  24. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36(1), 222–236 (2017). https://doi.org/10.1111/cgf.12797

    Article  Google Scholar 

  25. Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3D object recognition in cluttered scenes. Int. J. Comput. Vis. 102, 129–145 (2013). https://doi.org/10.1007/s11263-012-0568-x

    Article  MathSciNet  Google Scholar 

  26. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013). https://doi.org/10.1109/TMI.2013.2265603

    Article  Google Scholar 

  27. Zhen, X., Gu, X., Yan, H., Zhou, L., Jia, X., Jiang, S.B.: 57(21), 6807–6826 (2012). https://doi.org/10.1088/0031-9155/57/21/6807

Download references

Acknowledgements

The authors would like to thank Perrine Chassat for her early work on the partial matching, allowing us to easily adapt the new data fidelity terms to the real case of liver surfaces registrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Louis Antonsanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonsanti, PL., Glaunès, J., Benseghir, T., Jugnon, V., Kaltenmark, I. (2021). Partial Matching in the Space of Varifolds. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics