Abstract
In computer vision and medical imaging, the problem of matching structures finds numerous applications from automatic annotation to data reconstruction. The data however, while corresponding to the same anatomy, are often very different in topology or shape and might only partially match each other. We introduce a new asymmetric data dissimilarity term for various geometric shapes like sets of curves or surfaces. This term is based on the Varifold shape representation and assesses the embedding of a shape into another one without relying on correspondences between points. It is designed as data attachment for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, allowing to compute meaningful deformation of one shape onto a subset of the other. Registrations are illustrated on sets of synthetic 3D curves, real vascular trees and livers’ surfaces from two different modalities: Computed Tomography (CT) and Cone Beam Computed Tomography (CBCT). All experiments show that this data dissimilarity term leads to coherent partial matching despite the topological differences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiger, D., Mitra, N., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: 35th International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2008), vol. 27, August 2008. https://doi.org/10.1145/1399504.1360684
Bashiri, F.S., Baghaie, A., Rostami, R., Yu, Z., D’Souza, R.: Multi-modal medical image registration with full or partial data: a manifold learning approach. J. Imaging 5, 5 (2018). https://doi.org/10.3390/jimaging5010005
Beg, M.F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa
Benseghir, T., Malandain, G., Vaillant, R.: Iterative closest curve: a framework for curvilinear structure registration application to 2D/3D coronary arteries registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 179–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_23
Bronstein, A., Bronstein, M., Bruckstein, A., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84, 163–183 (2009). https://doi.org/10.1007/s11263-008-0147-3
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. 103(5), 1168–1172 (2006). https://doi.org/10.1073/pnas.0508601103
Charlier, B., Charon, N., Trouvé, A.: The Fshape framework for the variability analysis of functional shapes. Found. Comput. Math. 17(2), 287–357 (2015). https://doi.org/10.1007/s10208-015-9288-2
Charlier, B., Feydy, J., Glaunès, J.A., Collin, F.D., Durif, G.: Kernel operations on the GPU, with Autodiff, without memory overflows. J. Mach. Learn. Res. 22(74), 1–6 (2021). http://jmlr.org/papers/v22/20-275.html
Charon, N., Charlier, B., Glaunèss, J., Gori, P., Roussillon, P.: 12 - fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles, pp. 441–477 (2020). https://doi.org/10.1016/B978-0-12-814725-2.00021-2
Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013). https://doi.org/10.1137/130918885
Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5(4), 281–99 (2001)
Feragen, A., Petersen, J., de Bruijne, M., et al.: Geodesic atlas-based labeling of anatomical trees: application and evaluation on airways extracted from CT. IEEE Trans. Med. Imaging 34, 1212–1226 (2015)
Feydy, J., Charlier, B., Vialard, F.-X., Peyré, G.: Optimal transport for diffeomorphic registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 291–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_34
Glaunès, J.: Transport par difféomorphismes de points, demesures et de courants pour la comparaison de formes et l’anatomie numérique (2005)
Halimi, O., Litany, O., Rodolà, E.R., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence, pp. 4365–4374 (2019). https://doi.org/10.1109/CVPR.2019.00450
Halimi, O., et al.: The whole is greater than the sum of its nonrigid parts. CoRR abs/2001.09650 (2020)
van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. In: Computer Graphics Forum (CGF), September 2013. https://doi.org/10.1111/cgf.12084
van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011). https://doi.org/10.1111/j.1467-8659.2011.01884.x
Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds July 2017
Kaltenmark, I., Trouvé, A.: Estimation of a growth development with partial diffeomorphic mappings. Q. Appl. Math. 77, 227–267 (2018)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4) (2012). https://doi.org/10.1145/2185520.2185526
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36(1), 222–236 (2017). https://doi.org/10.1111/cgf.12797
Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3D object recognition in cluttered scenes. Int. J. Comput. Vis. 102, 129–145 (2013). https://doi.org/10.1007/s11263-012-0568-x
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013). https://doi.org/10.1109/TMI.2013.2265603
Zhen, X., Gu, X., Yan, H., Zhou, L., Jia, X., Jiang, S.B.: 57(21), 6807–6826 (2012). https://doi.org/10.1088/0031-9155/57/21/6807
Acknowledgements
The authors would like to thank Perrine Chassat for her early work on the partial matching, allowing us to easily adapt the new data fidelity terms to the real case of liver surfaces registrations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Antonsanti, PL., Glaunès, J., Benseghir, T., Jugnon, V., Kaltenmark, I. (2021). Partial Matching in the Space of Varifolds. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-78191-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78190-3
Online ISBN: 978-3-030-78191-0
eBook Packages: Computer ScienceComputer Science (R0)