A Formalisation of SysML State Machines in mCRL2 | SpringerLink
Skip to main content

A Formalisation of SysML State Machines in mCRL2

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2021)

Abstract

This paper reports on a formalisation of the semi-formal modelling language SysML in the formal language mCRL2, in order to unlock formal verification and model-based testing using the mCRL2 toolset for SysML models. The formalisation focuses on a fragment of SysML used in the railway standardisation project EULYNX. It comprises the semantics of state machines, communication between objects via ports, and an action language called ASAL. It turns out that the generic execution model of SysML state machines can be elegantly specified using the rich data and process languages of mCRL2. This is a big step towards an automated translation as the generic model can be configured with a formal description of a specific set of state machines in a straightforward manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://eulynx.eu.

  2. 2.

    Formal Methods in Railway Signaling Infrastructure Standardization Processes.

  3. 3.

    https://www.ptc.com/en/products/windchill/integrity/.

References

  1. Abdelhalim, I., Schneider, S., Treharne, H.: An integrated framework for checking the behaviour of fUML models using CSP. Int. J. Softw. Tools Technol. Transf. 15(4), 375–396 (2013). https://doi.org/10.1007/s10009-012-0243-0

    Article  Google Scholar 

  2. Belinfante, A.: JTorX: Exploring Model-Based Testing. Ph.D. thesis, University of Twente, Enschede, Netherlands (2014). http://purl.utwente.nl/publications/91781

  3. Bouwman, M.: mCRL2 model capturing the generic semantics of EULYNX SysML. https://github.com/markuzzz/SysML-to-mCRL2

  4. Bouwman, M., van der Wal, D., Luttik, B., Stoelinga, M., Rensink, A.: What is the point: formal analysis and test generation or a railway standard. In: Baraldi, P., Di Maio, F., Zio, E. (eds.) Proceedings of ESREL2020-PSAM15, pp. 921–928. Research Publishing, Singapore (2020). https://doi.org/10.3850/978-981-14-8593-0_4410-cd

  5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems - improvements in expressivity and usability. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2019). Lecture Notes in Computer Science, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  6. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press (2014)

    Google Scholar 

  7. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards model checking executable UML specifications in mCRL2. ISSE 6(1–2), 83–90 (2010). https://doi.org/10.1007/s11334-009-0116-1

    Article  Google Scholar 

  8. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos, O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. Lecture Notes in Computer Science, vol. 6957, pp. 225–250. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-25271-6_12

    Chapter  Google Scholar 

  9. Kim, S., Carrington, D.A.: A formal model of the UML metamodel: the UML state machine and its integrity constraints. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal Specification and Development in Z and B. ZB 2002. Lecture Notes in Computer Science, vol. 2272, pp. 497–516. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_26

    Chapter  Google Scholar 

  10. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 241–256. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1_19

    Chapter  Google Scholar 

  11. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of UML statechart diagrams using the SPIN model-checker. Formal Asp. Comput. 11(6), 637–664 (1999). https://doi.org/10.1007/s001659970003

    Article  MATH  Google Scholar 

  12. Lilius, J., Paltor, I.: vUML: a tool for verifying UML models. In: The 14th IEEE International Conference on Automated Software Engineering, ASE 1999, Cocoa Beach, Florida, USA, 12–15 October 1999, pp. 255–258. IEEE Computer Society (1999). https://doi.org/10.1109/ASE.1999.802301

  13. Lilius, J., Paltor, I.P.: The semantics of UML state machines (1999)

    Google Scholar 

  14. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal semantics for complete UML state machines with communications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8_23

    Chapter  Google Scholar 

  15. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving parameterised boolean equation systems with infinite data through quotienting. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 216–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7_11

    Chapter  Google Scholar 

  16. Object Managament Group: OMG Unified Modeling Language, version 2.5.1 (2017). https://www.omg.org/spec/UML/

  17. Object Managament Group: Precise Semantics of UML State Machines (PSSM), version 1.0 (2019). https://www.omg.org/spec/PSSM/

  18. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In: France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8_31

    Chapter  Google Scholar 

  19. Pedroza, G., Apvrille, L., Knorreck, D.: AVATAR: A SysML environment for the formal verification of safety and security properties. In: 11th Annual International Conference on New Technologies of Distributed Systems, NOTERE 2011, Paris, France, 9–13 May 2011, pp. 1–10. IEEE (2011). https://doi.org/10.1109/NOTERE.2011.5957992

  20. Remenska, D., et al.: From UML to process algebra and back: an automated approach to model-checking software design artifacts of concurrent systems. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods. NFM 2013. LNCS, vol. 7871, pp. 244–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_17

  21. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collaborations. Electron. Notes Theor. Comput. Sci. 55(3), 357–369 (2001). https://doi.org/10.1016/S1571-0661(04)00262-2

    Article  Google Scholar 

  22. van der Wal, D., Bouwman, M., Stoelinga, M., Rensink, A.: On capturing the EULYNX railway standard with an internal DSL in Java. In: preparation for submission (2021)

    Google Scholar 

  23. Wang, H., Zhong, D., Zhao, T., Ren, F.: Integrating model checking with SysML in complex system safety analysis. IEEE Access 7, 16561–16571 (2019). https://doi.org/10.1109/ACCESS.2019.2892745

    Article  Google Scholar 

Download references

Acknowledgement

FormaSig and, by extension, this work are fully funded by ProRail and DB Netz AG. The vision presented in this article does not necessarily reflect the strategy of DB Netz AG or ProRail, but reflects the personal views of the authors.

We also thank the anonymous reviewers for their constructive suggestions, which led to improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Bouwman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouwman, M., Luttik, B., van der Wal, D. (2021). A Formalisation of SysML State Machines in mCRL2. In: Peters, K., Willemse, T.A.C. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2021. Lecture Notes in Computer Science(), vol 12719. Springer, Cham. https://doi.org/10.1007/978-3-030-78089-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78089-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78088-3

  • Online ISBN: 978-3-030-78089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics