Abstract
This paper evaluates three convolutional neural network architectures – U-Net, SegNet, and Fully Convolutional (FC) DenseNets – in application to kidney segmentation in the dynamic contrast-enhanced magnetic resonance images (DCE-MRI). We found U-Net to outperform the alternative solutions with the Jaccard coefficient equal to 94% against 93% and 91% for SegNet and FCDenseNets, respectively. As a next step, we propose to classify renal mask voxels into cortex, medulla, and pelvis based on temporal characteristics of signal intensity time courses. We evaluate our computational framework on a set of 20 DCE-MRI series by calculating image-derived glomerular filtration rates (GFR) – an indicator of renal tissue state. Then we compare our calculated GFR with the available ground-truth values measured in the iohexol clearance tests. The mean bias between the two measurements amounts to −7.4 ml/min/1.73 m2 which proves the reliability of the designed segmentation pipeline.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Choi, Y., et al.: The initial area under the curve derived from dynamic contrast-enhanced MRI improves prognosis prediction in glioblastoma with unmethylated mgmt promoter. Am. J. Neuroradiol. 38(8), 1528–1535 (2017)
Cutajar, M., Mendichovszky, I., Tofts, P., Gordon, I.: The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur. J. Radiol. 74(3), e154–e60 (2010)
Haghighi, M., Warfield, S.K., Kurugol, S.: Automatic renal segmentation in DCE-MRI using convolutional neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1534–1537 (2018). https://doi.org/10.1109/ISBI.2018.8363865
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1–11, December 2015
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243
Johnson, H.J., McCormick, M.M., Ibanez, L.: The ITK Software Guide: Design and Functionality. Kitware (2020)
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183 (2017). https://doi.org/10.1109/CVPRW.2017.156
Khan, Z., Yahya, N., Alsaih, K., Ali, S.S.A., Meriaudeau, F.: Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI. Sensors 20(11), 3183 (2020). https://doi.org/10.3390/s20113183
Kline, T.L., et al.: Performance of an artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys. J. Digit. Imaging 30(4), 442–448 (2017). https://doi.org/10.1007/s10278-017-9978-1
Lee, V.S., et al.: Renal function measurements from MR renography and a simplified multicompartmental model. Am. J. Physiol.-Renal Physiol. 292(5), F1548–F1559 (2007). https://doi.org/10.1152/ajprenal.00347.2006
Li, S., et al.: Wavelet-based segmentation of renal compartments in dce-mri of human kidney: Initial results in patients and healthy volunteers. Comput. Med. Imaging Graph. 36, 108–18 (2012). https://doi.org/10.1016/j.compmedimag.2011.06.005
Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734 (2015). https://doi.org/10.1109/ACPR.2015.7486599
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683
Sourbron, S.P., Michaely, H.J., Reiser, M.F., Schoenberg, S.O.: MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investigative Radiology 43(1), 40–48 (2008). https://doi.org/10.1097/rli.0b013e31815597c5
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)
Tofts, P., Cutajar, M., Mendichovszky, I., Peters, A., Gordon, I.: Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur. Radiol. 22, 1320–30 (2012). https://doi.org/10.1007/s00330-012-2382-9
Ulas, C., et al.: Convolutional neural networks for direct inference of pharmacokinetic parameters: Application to stroke dynamic contrast-enhanced MRI. Frontiers Neurol. 9, 1147 (2019). https://doi.org/10.3389/fneur.2018.01147
Yang, X., Le Minh, H., (Tim) Cheng, K.T., Sung, K.H., Liu, W.: Renal compartment segmentation in dce-mri images. Med. Image Anal. 32(C), 269–280 (2016). https://doi.org/10.1016/j.media.2016.05.006
Yoruk, U., Hargreaves, B.A., Vasanawala, S.S.: Automatic renal segmentation for MR urography using 3D-GrabCut and random forests. Magn. Reson. Med. 79(3), 1696–1707 (2018). https://doi.org/10.1002/mrm.26806
Zöllner, F., et al.: Assessment of 3d dce-mri of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput. Med. Imaging Graph. 33, 171–81 (2009). https://doi.org/10.1016/j.compmedimag.2008.11.004
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Klepaczko, A., Eikefjord, E., Lundervold, A. (2021). Deep Convolutional Neural Networks in Application to Kidney Segmentation in the DCE-MR Images. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-77967-2_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77966-5
Online ISBN: 978-3-030-77967-2
eBook Packages: Computer ScienceComputer Science (R0)