A Higher-Order Adaptive Network Model to Simulate Development of and Recovery from PTSD | SpringerLink
Skip to main content

A Higher-Order Adaptive Network Model to Simulate Development of and Recovery from PTSD

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12743))

Included in the following conference series:

Abstract

In this paper, a second-order adaptive network model is introduced for a number of phenomena that occur in the context of PTSD. First of all the model covers simulation of the formation of a mental model of a traumatic course of events and its emotional responses that make replay of flashback movies happen. Secondly, it addresses learning processes of how a stimulus can become a trigger to activate this acquired mental model. Furthermore, the influence of therapy on the ability of an individual to learn to control the emotional responses to the traumatic mental model was modeled. Finally, a form of second-order adaptation was covered to unblock and activate this learning ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19(4), 126–130 (1996)

    Article  Google Scholar 

  2. Admon, R., Milad, M.R., Hendler, T.: A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn. Sci. 17(7), 337–347 (2013)

    Article  Google Scholar 

  3. Akiki, T.J., Averill, C.L., Abdallah, C.G.: A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep. 19(11), 1–10 (2017). https://doi.org/10.1007/s11920-017-0840-4

    Article  Google Scholar 

  4. Benbassat, J.: Role modeling in medical education: the importance of a reflective imitation. Acad. Med. 89(4), 550–554 (2014)

    Article  Google Scholar 

  5. Brogden, W.J.: Sensory preconditioning of human subjects. J. Exp. Psychol. 37, 527–539 (1947)

    Article  Google Scholar 

  6. Chandra, N., Barkai, E.: A non-synaptic mechanism of complex learning: modulation of intrinsic neuronal excitability. Neurobiol. Learn. Mem. 154, 30–36 (2018)

    Article  Google Scholar 

  7. Duvarci, S., Pare, D.: Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014)

    Article  Google Scholar 

  8. Formolo, D., Van Ments, L., Treur, J.: A computational model to simulate development and recovery of traumatised patients. Biol. Inspired Cogn. Archit. 21, 26–36 (2017)

    Google Scholar 

  9. Fitzgerald, J.M., DiGangi, J.A., Phan, K.L.: Functional neuroanatomy of emotion and its regulation in PTSD. Harv. Rev. Psychiatry 26(3), 116–128 (2018)

    Article  Google Scholar 

  10. Garcia, R.: Stress, metaplasticity, and antidepressants. Curr. Mol. Med. 2, 629–638 (2002)

    Article  Google Scholar 

  11. Hall, G.: Learning about associatively activated stimulus representations: implications for acquired equivalence and perceptual learning. Animal Learn. Behav. 24(3), 233–255 (1996). https://doi.org/10.3758/BF03198973

    Article  Google Scholar 

  12. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, Hoboken (1949)

    Google Scholar 

  13. Holmes, S.E., et al.: Cerebellar and prefrontal cortical alterations in PTSD: structural and functional evidence. Chronic Stress 2, 1–11 (2018). https://doi.org/10.1177/2470547018786390

    Article  Google Scholar 

  14. Keysers, C., Gazzola, V.: Hebbian learning and predictive mirror neurons for actions, sensations and emotions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130175 (2014)

    Article  Google Scholar 

  15. Levin, R., Nielsen, T.A.: Disturbed dreaming, posttraumatic stress disorder, and affect distress: a review and neurocognitive model. Psychol. Bull. 133, 482–528 (2007)

    Article  Google Scholar 

  16. Naze, S., Treur, J.: A computational agent model for post-traumatic stress disorders. In: Samsonovich, A.V., Johannsdottir, K.R. (eds.) Proceedings of the Second International Conference on Biologically Inspired Cognitive Architectures, BICA 2011, pp. 249–261. IOS Press (2011)

    Google Scholar 

  17. Naze, S., Treur, J.: A computational model for development of post-traumatic stress disorders by hebbian learning. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 141–151. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34481-7_18

    Chapter  Google Scholar 

  18. Ochsner, K.N., Gross, J.J.: The neural bases of emotion and emotion regulation: a valuation perspective. In: Handbook of Emotional Regulation, 2nd edn., pp. 23–41. Guilford, New York (2014)

    Google Scholar 

  19. Panksepp, J., Biven, L.: The Archaeology of Mind: Neuroevolutionary Origins of Human Emotions. Chap. 1. W.W. Norton, New York (2012)

    Google Scholar 

  20. Parsons, R.G., Ressler, K.J.: Implications of memory modulation for post-traumatic stress and fear disorders. Nat. Neurosci. 16(2), 146–153 (2013)

    Article  Google Scholar 

  21. Shatz, C.J.: The developing brain. Sci. Am. 267, 60–67 (1992). https://doi.org/10.1038/scientificamerican0992-60

    Article  Google Scholar 

  22. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45213-5

    Book  MATH  Google Scholar 

  23. Treur, J.: Modeling higher-order adaptivity of a network by multilevel network reification. Netw. Sci. 8, S110–S144 (2020)

    Article  Google Scholar 

  24. Treur, J.: Network-Oriented Modeling For Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31445-3

    Book  Google Scholar 

  25. Van Gog, T., Paas, F., Marcus, N., Ayres, P., Sweller, J.: The mirror neuron system and observational learning: implications for the effectiveness of dynamic visualizations. Educ. Psychol. Rev. 21(1), 21–30 (2009)

    Article  Google Scholar 

  26. Webb, T.L., Miles, E., Sheeran, P.: Dealing with feeling: a meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychol. Bull. 138(4), 775 (2012)

    Article  Google Scholar 

  27. Zandvakili, A., et al.: Mapping PTSD symptoms to brain networks: a machine learning study. Transl. Psychiatry 10, e195 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Ments, L., Treur, J. (2021). A Higher-Order Adaptive Network Model to Simulate Development of and Recovery from PTSD. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics