A Semi-supervised Approach for Trajectory Segmentation to Identify Different Moisture Processes in the Atmosphere | SpringerLink
Skip to main content

A Semi-supervised Approach for Trajectory Segmentation to Identify Different Moisture Processes in the Atmosphere

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Different moisture processes in the atmosphere leave distinctive isotopologue fingerprints. Therefore, the paired analysis of water vapour and the ratio between different isotopologues, for example \(\{H_2O,\delta D\}\) with \(\delta D\) as the standardized \(HDO/H_2O\) isotopologue ratio, can be used to investigate these processes. In this paper, we propose a novel semi-supervised approach for trajectory segmentation to extract information that enables us to identify atmospheric moisture processes. While our approach can be transferred to a variety of domains as well, we focus our evaluation on Lagrangian air parcel trajectories and modelled \(\{H_2O,\delta D\}\) fields. Our final aim is to understand the free tropospheric \(\{H_2O,\delta D\}\) pair distribution that is observable by satellite sensors of the latest generation. Our method adopts a recently developed density-based clustering algorithm with constrained expansion, CoExDBSCAN, which identifies clusters of temporal neighbourhoods that are only expanded with regards to a priori constraints in defined subspaces. By formulating a constraint for the correlation of \(\{H_2O,\delta D\}\), we can segment trajectories into multiple phases and extract the regression coefficients for each phase. Grouping segments with similar coefficients and comparing them to theoretical values allows us to find interpretable structures that correspond to atmospheric moisture processes. The experimental evaluation demonstrates that our method facilitates an efficient, data-driven analysis of large-scale climate data and multivariate time series in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bertl4398/iccs2021.

References

  1. Bony, S., et al.: Clouds, circulation and climate sensitivity. Nature Geosci. 8(4), 261–268 (2015). https://doi.org/10.1038/ngeo2398

    Article  Google Scholar 

  2. Borger, C., et al.: Evaluation of MUSICA IASI tropospheric water vapour profiles using theoretical error assessments and comparisons to GRUAN vaisala rs92 measurements. Atmos. Measur. Techn. 11(9), 4981–5006 (2018). https://doi.org/10.5194/amt-11-4981-2018

    Article  Google Scholar 

  3. Dinler, D., Tural, M.K.: A survey of constrained clustering. In: Celebi, M.E., Aydin, K. (eds.) Unsupervised Learning Algorithms, pp. 207–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8_9

    Chapter  Google Scholar 

  4. Ertl., B., Meyer., J., Schneider., M., Streit., A.: CoExDBSCAN: density-based clustering with constrained expansion. In: Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pp. 104–115. INSTICC, SciTePress (2020). https://doi.org/10.5220/0010131201040115

  5. Ertl., B., Meyer., J., Streit., A., Schneider., M.: Application of mixtures of gaussians for tracking clusters in spatio-temporal data. In: Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pp. 45–54. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007949700450054

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  7. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 63–72. Association for Computing Machinery, New York (1999). https://doi.org/10.1145/312129.312198

  8. Gaffney, S.J., Robertson, A.W., Smyth, P., Camargo, S.J., Ghil, M.: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn. 29(4), 423–440 (2007). https://doi.org/10.1007/s00382-007-0235-z

    Article  Google Scholar 

  9. Hallac, D., Vare, S., Boyd, S., Leskovec, J.: Toeplitz inverse covariance-based clustering of multivariate time series data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 215–223. Association for Computing Machinery, New York (2017)

    Google Scholar 

  10. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1247480.1247546

  11. Maciąg, P.S.: A survey on data mining methods for clustering complex spatiotemporal data. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 115–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58274-0_10

    Chapter  Google Scholar 

  12. Miltenberger, A.K., Pfahl, S., Wernli, H.: An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO. Geosci. Model Dev. 6(6), 1989–2004 (2013)

    Google Scholar 

  13. NOAA: National Oceanic and Atmospheric Administration Big Data Program. https://www.noaa.gov/organization/information-technology/big-data-program. Accessed 30 Nov 2020

  14. Noone, D.: Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere. J. Climate 25(13), 4476–4494 (012). https://doi.org/10.1175/JCLI-D-11-00582.1

  15. Noone, D., et al.: Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory. J. Geophys. Res. Atmo. 116(D22) (2011). https://doi.org/10.1029/2011JD015773

  16. Schneider, M., et al.: Synergetic use of IASI and TROPOMI space borne sensors for generating a tropospheric methane profile product. submitted to Atmospheric Measurement Techniques (2021)

    Google Scholar 

  17. Schneider, M., et al.: Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric H\(_2\)O,\(\delta \)D pairs - a review. Atmos. Measure. Tech. 9(7), 2845–2875 (2016). https://doi.org/10.5194/amt-9-2845-2016

    Article  Google Scholar 

  18. Sprenger, M., Wernli, H.: The LAGRANTO Lagrangian analysis tool - version 2.0. Geosci. Model Dev. 8(8), 2569–2586 (2015). https://doi.org/10.5194/gmd-8-2569-2015

  19. Wang, S., Cai, T., Eick, C.F.: New spatiotemporal clustering algorithms and their applications to ozone pollution. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 1061–1068 (2013). https://doi.org/10.1109/ICDMW.2013.14

  20. Zhang, Q., Wu, J., Zhang, P., Long, G., Zhang, C.: Salient subsequence learning for time series clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2193–2207 (2019). https://doi.org/10.1109/TPAMI.2018.2847699

    Article  Google Scholar 

  21. Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series clustering. Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/312521

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ertl, B., Schneider, M., Diekmann, C., Meyer, J., Streit, A. (2021). A Semi-supervised Approach for Trajectory Segmentation to Identify Different Moisture Processes in the Atmosphere. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics