Abstract
The discipline of process mining aims to study processes in a data-driven manner by analyzing historical process executions, often employing Petri nets. Event data, extracted from information systems (e.g. SAP), serve as the starting point for process mining. Recently, novel types of event data have gathered interest among the process mining community, including uncertain event data. Uncertain events, process traces and logs contain attributes that are characterized by quantified imprecisions, e.g., a set of possible attribute values. The PROVED tool helps to explore, navigate and analyze such uncertain event data by abstracting the uncertain information using behavior graphs and nets, which have Petri nets semantics. Based on these constructs, the tool enables discovery and conformance checking.
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at https://github.com/proved-py/proved-core/.
- 2.
Available at https://github.com/proved-py/proved-app/.
References
Pip - PyPi. https://pypi.org/project/pip/. Accessed 03 Feb 2020
The PROVED project on GitHub. https://github.com/proved-py/. Accessed 03 Feb 2021
van der Aalst, W.M.P.: Interval timed coloured Petri nets and their analysis. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 453–472. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56863-8_61
van der Aalst, W.M.P.: Process Mining: Data Science in Action, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from scenarios with viptool. In: van Hee, K.M., Valk, R. (eds.) Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from scenarios with VipTool. In: International Conference on Applications and Theory of Petri Nets. pp. 388–398. Springer (2008). LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68746-7_25
Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Software Eng. 17(3), 259 (1991)
Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python (PM4Py): bridging the gap between process and data science. In: ICPM Demo Track (CEUR 2374), pp. 13–16 (2019)
Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: a tool for the synthesis and mining of Petri nets. In: 2009 Ninth International Conference on Application of Concurrency to System Design, pp. 181–185. IEEE (2009)
Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz: open source graph drawing tool. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_57
Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)
Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with generalized stochastic Petri nets. ACM SIGMETRICS Perform. Eval. Rev. 26(2), 2 (1998)
Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process mining. In: 2019 International Conference on Process Mining (ICPM), pp. 89–96. IEEE (2019)
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncertain event data. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 238–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_20
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Conformance checking over uncertain event data. arXiv preprint - arXiv:2009.14452 (2020)
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient time and space representation of uncertain event data. Algorithms 13(11), 285–312 (2020)
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17722-4_5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P. (2021). PROVED: A Tool for Graph Representation and Analysis of Uncertain Event Data. In: Buchs, D., Carmona, J. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2021. Lecture Notes in Computer Science(), vol 12734. Springer, Cham. https://doi.org/10.1007/978-3-030-76983-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-76983-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76982-6
Online ISBN: 978-3-030-76983-3
eBook Packages: Computer ScienceComputer Science (R0)