Abstract
Interconnecting Internet of Things (IoT) devices creates a network of services capable of working together to accomplish certain goals in different domains. The heterogeneous nature of IoT environments makes it critical to find devices that extend existing architectures and helps in reaching the desired goal; especially if we have to take into consideration data privacy. In this paper, we present a Linked Open Data (LOD) based approach to semantically annotate and recommend IoT devices while adding a layer of data security and privacy through implementing the SOLID (SOcial LInked Data) framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beltran, V., Ortiz, A.M., Hussein, D., Crespi, N.: A semantic service creation platform for social IoT (March 2014). https://doi.org/10.1109/WF-IoT.2014.6803173
Chen, Y., Zhou, M., Zheng, Z., Chen, D.: Time-aware smart object recommendation in social internet of things. IEEE Internet Things J. 7(3), 2014–2027 (2020)
Cheniki, N., Belkhir, A., Sam, Y., Messai, N.: LODS: a linked open data based similarity measure. In: 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Paris, France, pp. 229–234 (June 2016)
Chirila, S., Lemnaru, C., Dinsoreanu, M.: Semantic-based IoT device discovery and recommendation mechanism. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 111–116 (2016)
Gyrard, A.: An architecture to aggregate heterogeneous and semantic sensed data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 697–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_54
Mecibah, R., Djamaa, B., Yachir, A., Aissani, M.: A scalable semantic resource discovery architecture for the internet of things. In: Demigha, O., Djamaa, B., Amamra, A. (eds.) CSA 2018. LNNS, vol. 50, pp. 37–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98352-3_5
Meymandpour, R., Davis, J.G.: Enhancing recommender systems using linked open data-based semantic analysis of items. In: 3rd Australasian Web Conference (AWC 2015), Sydney, Australia (27–30 January 2015)
Pahl, M., Liebald, S.: A modular distributed IoT service discovery. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 448–454 (2019)
Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, vol. 77, p. 123 (2010)
Pfisterer, D., et al.: Spitfire: toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011)
Piao, G., Ara, S., Breslin, J.G.: Computing the semantic similarity of resources in DBpedia for recommendation purposes. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 185–200. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31676-5_13
Saleem, Y., Crespi, N., Rehmani, M.H., Copeland, R., Hussein, D., Bertin, E.: Exploitation of social IoT for recommendation services. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 359–364 (2016)
Zorgati, H., Djemaa, R.B., Amor, I.A.B.: Service discovery techniques in internet of things: a survey. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 1720–1725 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Komeiha, F., Cheniki, N., Sam, Y., Jaber, A., Messai, N., Devogele, T. (2021). Towards a Privacy Conserved and Linked Open Data Based Device Recommendation in IoT. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2020 Workshops. ICSOC 2020. Lecture Notes in Computer Science(), vol 12632. Springer, Cham. https://doi.org/10.1007/978-3-030-76352-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-76352-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76351-0
Online ISBN: 978-3-030-76352-7
eBook Packages: Computer ScienceComputer Science (R0)