A Deep Autoencoder Based Multi-Criteria Recommender System | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1377))

Abstract

Traditional recommender systems (RSs) try to quantify the user preferences about items using a numerical value, called rating. However, since employing of RSs has been increased, user expectations have been differentiated. Users may judge items according to different criteria. This gives birth to multicriteria recommender systems where users provide the rating on multiple aspects of an item in new dimensions, thereby increasing the rating matrix’s size and opening up some challenges for researchers in the field, such as sparsity, scalability, and the aggregation of multicriteria rating problems. In this paper, we propose a multicriteria recommender system based on a deep autoencoder to learn the nonlinear relation between users on a multicriteria context in order to reconstruct the missing ratings, and on a Multi-Criteria Decision Making method, which proposes a Correlation Coefficient and Standard Deviation (CCSD) integrated approach to determine the weight of the criteria. We compare our results to some other single and multicriteria recommendation models. The results show that our proposed approach boosts the performance up and outperforms all other methods in terms of recommendation accuracy measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/.

References

  1. Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–408 (2007)

    Google Scholar 

  2. Marin, L., Moreno, A., Isern, D.: Automatic preference learning on numeric and multi-valued categorical attributes. Knowl.-Based Syst. 56, 201–215 (2014)

    Article  Google Scholar 

  3. Al-Ghuribi, S.M., Noah, S.A.M.: Multi-criteria review-based recommender system–the state of the art. IEEE Access 7, 169446–169468 (2019)

    Article  Google Scholar 

  4. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R.: Wide & deep learning for recommender systems, pp. 7–10 (2016)

    Google Scholar 

  5. Batmaz, Z., Kaleli, C.: AE-MCCF: an autoencoder-based multicriteria recommendation algorithm. Arab. J. Sci. Eng. 44(11), 9235–9247 (2019)

    Article  Google Scholar 

  6. Manouselis, N., Costopoulou, C.: Experimental analysis of design choices in multiattribute utility collaborative filtering. Int. J. Pattern Recogn. Artif. Intell. 21(02), 311–331 (2007)

    Article  Google Scholar 

  7. Song, W., Sakao, T.: An environmentally conscious PSS recommendation method based on users’ vague ratings: a rough multicriteria approach. J. Cleaner Prod. 172, 1592–1606 (2018)

    Article  Google Scholar 

  8. Hdioud, F., Frikh, B., Ouhbi, B.: Multi-criteria recommender systems based on multi-attribute decision making. In: Proceedings of International Conference on Information Integration and Web-Based Applications & Services, pp. 203–210, December 2013

    Google Scholar 

  9. Ding, Y., Li, S., Yu, W., Wang, J., Liu, M.: A unified neural model for review-based rating prediction by leveraging multicriteria ratings and review text. Cluster Comput. 22(4), 9177–9185 (2019)

    Article  Google Scholar 

  10. Hdioud, F., Frikh, B., Ouhbi, B.: Bootstrapping recommender systems based on a multicriteria decision making approach. In: 2014 International Conference on Next Generation Networks and Services (NGNS), pp. 209–215. IEEE, May 2014

    Google Scholar 

  11. Ebadi, A., Krzyzak, A.: A hybrid multicriteria hotel recommender system using explicit and implicit feedbacks. Int. J. Comput. Inf. Eng. 10(8), 1377–1385 (2016)

    Google Scholar 

  12. Tan, Y., Shi, Y.: Data Mining and Big Data. Springer (2016)

    Google Scholar 

  13. Nilashi, M., Esfahani, M.D., Roudbaraki, M.Z., Ramayah, T., Ibrahim, O.: A multicriteria collaborative filtering recommender system using clustering and regression techniques. J. Soft Comput. Decis. Support Syst. 3(5), 24–30 (2016)

    Google Scholar 

  14. Farokhi, N., Vahid, M., Nilashi, M., Ibrahim, O.: A multicriteria recommender system for tourism using fuzzy approach. J. Soft Comput. Decis. Support Syst. 3(4), 19–29 (2016)

    Google Scholar 

  15. Nilashi, M., bin Ibrahim, O., Ithnin, N., Sarmin, N.H.: A multicriteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electron. Commer. Res. Appl. 14(6), 542–562 (2015)

    Google Scholar 

  16. Jannach, D., Karakaya, Z., Gedikli, F.: Accuracy improvements for multicriteria recommender systems. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 674–689, June 2012

    Google Scholar 

  17. Strub, F., Mary, J., Gaudel, R.: Hybrid recommender system based on autoencoders. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (2016)

    Google Scholar 

  18. Wang, Y.M., Luo, Y.: Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Math. Comput. Model. 51(1–2), 1–12 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zheng, Y.: Criteria chains: a novel multicriteria recommendation approach. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 29–33, March 2017

    Google Scholar 

  20. Sreepada, R.S., Patra, B.K., Hernando, A.: Multicriteria recommendations through preference learning. In: Proceedings of the Fourth ACM IKDD Conferences on Data Sciences, pp. 1–11, March 2017

    Google Scholar 

  21. Choudhary, P., Kant, V., Dwivedi, P.: A particle swarm optimization approach to multi criteria recommender system utilizing effective similarity measures. In: Proceedings of the 9th International Conference on Machine Learning and Computing, pp. 81–85, February 2017

    Google Scholar 

  22. Wijayanto, A., Winarko, E.: Implementation of multicriteria collaborative filtering on cluster using Apache Spark. In: 2016 2nd International Conference on Science and Technology-Computer (ICST), pp. 177–181. IEEE, October 2016

    Google Scholar 

  23. Akcayol, M.A., Utku, A., Aydoğan, E., Mutlu, B.: A weighted multi-attribute-based recommender system using extended user behavior analysis. Electron. Commer. Res. Appl. 28, 86–93 (2018)

    Article  Google Scholar 

  24. Palanivel, K., Sivakumar, R.: A study on implicit feedback in multicriteria e-commerce recommender system. J. Electron. Commer. Res. 11(2) (2010)

    Google Scholar 

  25. Núñez-Valdez, E.R., Quintana, D., Crespo, R.G., Isasi, P., Herrera-Viedma, E.: A recommender system based on implicit feedback for selective dissemination of ebooks. Inf. Sci. 467, 87–98 (2018)

    Article  Google Scholar 

  26. Naak, A., Hage, H., Aïmeur, E.: A multicriteria collaborative filtering approach for research paper recommendation in papyres. In: International Conference on e-Technologies, pp. 25–39. Springer, Heidelberg, May 2009

    Google Scholar 

  27. Shambour, Q.: A user-based multicriteria recommendation approach for personalized recommendations. Int. J. Comput. Sci. Inf. Secur. 14(12), 657 (2016)

    Google Scholar 

  28. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  29. Shambour, Q., Hourani, M., Fraihat, S.: An item-based multicriteria collaborative filtering algorithm for personalized recommender systems. Int. J. Adv. Comput. Sci. Appl. 7(8), 274–279 (2016)

    Google Scholar 

  30. Kouadria, A., Nouali, O., Al-Shamri, M.Y.H.: A multicriteria collaborative filtering recommender system using learning-to-rank and rank aggregation. Arab. J. Sci. Eng. 45(4), 2835–2845 (2020)

    Article  Google Scholar 

  31. Zitouni, H., Nouali, O., Meshoul, S.: Toward a new recommender system based on multicriteria hybrid information filtering. In: IFIP International Conference on Computer Science and its Applications, pp. 328–339. Springer, Cham, May 2015

    Google Scholar 

  32. Monti, D., Rizzo, G., Morisio, M.: A systematic literature review of multicriteria recommender systems. Artif. Intell. Rev. 54(1), 427–468 (2020)

    Article  Google Scholar 

  33. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, pp. 111–112, May 2015

    Google Scholar 

  34. Shambour, Q.: A deep learning based algorithm for multi-criteria recommender systems. Knowl.-Based Syst. 211, 106545 (2021)

    Article  Google Scholar 

  35. Kuchaiev, O., Ginsburg, B.: Training deep autoencoders for collaborative filtering. arXiv preprint arXiv:1708.01715 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Bougteb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bougteb, Y., Ouhbi, B., Frikh, B., Zemmouri, E.M. (2021). A Deep Autoencoder Based Multi-Criteria Recommender System. In: Hassanien, A.E., et al. Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021). AICV 2021. Advances in Intelligent Systems and Computing, vol 1377. Springer, Cham. https://doi.org/10.1007/978-3-030-76346-6_6

Download citation

Publish with us

Policies and ethics