Complex Networks to Differentiate Elderly and Young People | SpringerLink
Skip to main content

Complex Networks to Differentiate Elderly and Young People

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2020)

Abstract

Cardiovascular disease (CVD) is a general term that describes different heart problems. There are several heart diseases, which still lead thousands of people to sudden death. Among them are high blood pressure, ischemia, variation in cardiac rhythms, and pericardial effusion. Studies about these diseases are usually made through the analysis of electrocardiogram (ECG) signals, which presents valuable information on the development of the heart’s status. Recent papers have posited the creation of quantile graphs (QG) using data from ECG. In this method, based on transition probabilities, these quantile graphs are a result of a time series mapped into a network. This so-called QG method can be employed to differentiate between young and elderly patients using their ECG signals. The primary goal of our paper is to show how variations in ECG signals are mirrored in the respective QGs’ topology. Our analyses were centered on three metrics: mean jump length, betweenness centrality and clustering coefficient. The results indicate that the QG method is a reliable tool for differentiating ECG exams regarding the age of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Who. www (2019). https://www.who.int/news-room/

  2. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease: models of computation and analysis of EEGs. Clin. EEG NeuroSci. 36(3), 131–140 (2005)

    Article  Google Scholar 

  3. Al-Fahoum, A.S., Al-Fraihat, A.A.: Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 730218 (2014)

    Article  Google Scholar 

  4. Rojas, I., Joya, G., Catala, A. (eds.): Advances in Computational Intelligence. IWANN 2017. LNCS, vol. 10306. Springer, Cham (2017)

    Google Scholar 

  5. Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Automated EEG signals analysis using quantile graphs. In: Rojas, I., Joya, G., Catala, A. (eds.) International Work-Conference on Artificial Neural Networks. Lecture Notes in Computer Science, vol. 10306, pp. 95–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_9

    Chapter  Google Scholar 

  6. Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Application of quantile graphs to the automated analysis of EEG signals. Neural Process. Lett. 52, 5–20 (2018). https://doi.org/10.1007/s11063-018-9936-z

    Article  Google Scholar 

  7. Campanharo, A.S.L.O., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Phys. A: Stat. Mech. Appl. 444, 43–48 (2016)

    Article  Google Scholar 

  8. Campanharo, A.S.L.O., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Phys. A: Stat. Mech. Appl. 444, 43–48 (2016)

    Article  Google Scholar 

  9. Campanharo, A.S.L.O., Sirer, M.I., Malmgren, R.D., Ramos, F.M., Amaral, L.A.N.: Duality between time series and networks. PLoS ONE 6(8), e23378 (2011)

    Article  Google Scholar 

  10. Cannady, J.: Artificial neural networks for misuse detection. In: National Information Systems Security Conference, vol. 26. Baltimore (1998)

    Google Scholar 

  11. Cerri, R., de Leon Ferreira, A.C.P., et al.: Aprendizado de máquina: breve introdução e aplicações. Cadernos de Ciência & Tecnol. 34(3), 297–313 (2019)

    Google Scholar 

  12. Costa, L.F., Rodrigues, F.A., Travieso, G., Villas, P.R.: Characterization of complex networks. Adv. Phys. 56(1), 167–242 (2007)

    Article  Google Scholar 

  13. Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Phys. D 56, 185–187 (1992)

    Article  MathSciNet  Google Scholar 

  14. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  15. Gao, Z., Jin, N.: Complex network from time series based on phase space reconstruction. Chaos 19, 033137 (2009). https://doi.org/10.1063/1.3227736

    Article  Google Scholar 

  16. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  17. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4(2), 627 (2013)

    Google Scholar 

  18. Horton, P., Nakai, K.: Better prediction of protein cellular localization sites with the it k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. (ISMB) 5, 147–152 (1997)

    Google Scholar 

  19. Iyengar, N., Peng, C., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 271(4), R1078–R1084 (1996)

    Article  Google Scholar 

  20. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511755798

    Book  MATH  Google Scholar 

  21. Korner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  22. Lai, C., Chung, P., Tseng, V.S.: A novel two-level clustering method for time series data analysis. Expert Syst. Appl. 37(9), 6319–6326 (2010). https://doi.org/10.1016/j.eswa.2010.02.089

    Article  Google Scholar 

  23. Macfarlane, P.W.: The influence of age and sex on the electrocardiogram. In: Kerkhof, P., Miller, V. (eds.) Sex-Specific Analysis of Cardiovascular Function. Experimental Medicine and Biology, vol. 1065, pp. 93–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77932-4_6

    Chapter  Google Scholar 

  24. Morris, A.S., Langari, R.: Measurement and Instrumentation: Theory and Application, 2nd edn. Academic Press, Cambridge (2012)

    Google Scholar 

  25. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  26. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)

    Article  Google Scholar 

  27. Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.: Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease. In: Rojas, I., Joya, G., Catala, A. (eds.) International Work-Conference on Artificial Neural Networks. Lecture Notes in Computer Science, vol. 11506, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_10

    Chapter  Google Scholar 

  28. Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.: Quantile graphs for EEG-based diagnosis Alzheimer’s disease. PloS ONE 15(6), e0231169 (2020)

    Article  Google Scholar 

  29. Pritchard, W.S., et al.: EEG-based, neural-net predictive classification of alzheimer’s disease versus control subjects is augmented by non-linear EEG measures. Electroencephalogr. Clin. Neurophysiol. 91(2), 118–130 (1994). https://doi.org/10.1016/0013-4694(94)90033-7

    Article  Google Scholar 

  30. Perez Riera, A.R., Barros, R.B.: Hypertrophic cardiomyopathy: value of electrocardiogram for the diagnosis of different types and for differential diagnosis with athlete’s heart. Revista De La Federacion Argentina De Cardiologia 44(1), 12–24 (2015)

    Google Scholar 

  31. Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  32. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Article  Google Scholar 

  33. Stam, C., Jelles, B., Achtereekte, H., Van Birgelen, J., Slaets, J.: Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer’s disease. Clin. Electroencephalogr. 27(2), 69–77 (1996)

    Article  Google Scholar 

  34. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Boulder (1994)

    Google Scholar 

  35. Supe, A., et al.: A study of stress in medical students at seth GS medical college. J. Postgrad. Med. 44(1), 1 (1998)

    Google Scholar 

  36. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)

    Article  Google Scholar 

  37. Zhang, J., Luo, X., Small, M.: Detecting chaos in pseudoperiodic time series without embedding. Phys. Rev. E 73, 016216 (2006)

    Article  Google Scholar 

  38. Zhang, J., Small, M.: Complex network from pseudoperiodic time series. Phys. Rev. Lett. 96(23), 238701 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruane M. Pineda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pineda, A.M., Rodrigues, F.A. (2021). Complex Networks to Differentiate Elderly and Young People. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76228-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76227-8

  • Online ISBN: 978-3-030-76228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics