Abstract
Cardiovascular disease (CVD) is a general term that describes different heart problems. There are several heart diseases, which still lead thousands of people to sudden death. Among them are high blood pressure, ischemia, variation in cardiac rhythms, and pericardial effusion. Studies about these diseases are usually made through the analysis of electrocardiogram (ECG) signals, which presents valuable information on the development of the heart’s status. Recent papers have posited the creation of quantile graphs (QG) using data from ECG. In this method, based on transition probabilities, these quantile graphs are a result of a time series mapped into a network. This so-called QG method can be employed to differentiate between young and elderly patients using their ECG signals. The primary goal of our paper is to show how variations in ECG signals are mirrored in the respective QGs’ topology. Our analyses were centered on three metrics: mean jump length, betweenness centrality and clustering coefficient. The results indicate that the QG method is a reliable tool for differentiating ECG exams regarding the age of the patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Who. www (2019). https://www.who.int/news-room/
Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease: models of computation and analysis of EEGs. Clin. EEG NeuroSci. 36(3), 131–140 (2005)
Al-Fahoum, A.S., Al-Fraihat, A.A.: Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 730218 (2014)
Rojas, I., Joya, G., Catala, A. (eds.): Advances in Computational Intelligence. IWANN 2017. LNCS, vol. 10306. Springer, Cham (2017)
Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Automated EEG signals analysis using quantile graphs. In: Rojas, I., Joya, G., Catala, A. (eds.) International Work-Conference on Artificial Neural Networks. Lecture Notes in Computer Science, vol. 10306, pp. 95–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_9
Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Application of quantile graphs to the automated analysis of EEG signals. Neural Process. Lett. 52, 5–20 (2018). https://doi.org/10.1007/s11063-018-9936-z
Campanharo, A.S.L.O., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Phys. A: Stat. Mech. Appl. 444, 43–48 (2016)
Campanharo, A.S.L.O., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Phys. A: Stat. Mech. Appl. 444, 43–48 (2016)
Campanharo, A.S.L.O., Sirer, M.I., Malmgren, R.D., Ramos, F.M., Amaral, L.A.N.: Duality between time series and networks. PLoS ONE 6(8), e23378 (2011)
Cannady, J.: Artificial neural networks for misuse detection. In: National Information Systems Security Conference, vol. 26. Baltimore (1998)
Cerri, R., de Leon Ferreira, A.C.P., et al.: Aprendizado de máquina: breve introdução e aplicações. Cadernos de Ciência & Tecnol. 34(3), 297–313 (2019)
Costa, L.F., Rodrigues, F.A., Travieso, G., Villas, P.R.: Characterization of complex networks. Adv. Phys. 56(1), 167–242 (2007)
Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Phys. D 56, 185–187 (1992)
Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)
Gao, Z., Jin, N.: Complex network from time series based on phase space reconstruction. Chaos 19, 033137 (2009). https://doi.org/10.1063/1.3227736
Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4(2), 627 (2013)
Horton, P., Nakai, K.: Better prediction of protein cellular localization sites with the it k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. (ISMB) 5, 147–152 (1997)
Iyengar, N., Peng, C., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 271(4), R1078–R1084 (1996)
Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511755798
Korner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988)
Lai, C., Chung, P., Tseng, V.S.: A novel two-level clustering method for time series data analysis. Expert Syst. Appl. 37(9), 6319–6326 (2010). https://doi.org/10.1016/j.eswa.2010.02.089
Macfarlane, P.W.: The influence of age and sex on the electrocardiogram. In: Kerkhof, P., Miller, V. (eds.) Sex-Specific Analysis of Cardiovascular Function. Experimental Medicine and Biology, vol. 1065, pp. 93–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77932-4_6
Morris, A.S., Langari, R.: Measurement and Instrumentation: Theory and Application, 2nd edn. Academic Press, Cambridge (2012)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)
Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)
Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.: Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease. In: Rojas, I., Joya, G., Catala, A. (eds.) International Work-Conference on Artificial Neural Networks. Lecture Notes in Computer Science, vol. 11506, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_10
Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.: Quantile graphs for EEG-based diagnosis Alzheimer’s disease. PloS ONE 15(6), e0231169 (2020)
Pritchard, W.S., et al.: EEG-based, neural-net predictive classification of alzheimer’s disease versus control subjects is augmented by non-linear EEG measures. Electroencephalogr. Clin. Neurophysiol. 91(2), 118–130 (1994). https://doi.org/10.1016/0013-4694(94)90033-7
Perez Riera, A.R., Barros, R.B.: Hypertrophic cardiomyopathy: value of electrocardiogram for the diagnosis of different types and for differential diagnosis with athlete’s heart. Revista De La Federacion Argentina De Cardiologia 44(1), 12–24 (2015)
Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)
Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)
Stam, C., Jelles, B., Achtereekte, H., Van Birgelen, J., Slaets, J.: Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer’s disease. Clin. Electroencephalogr. 27(2), 69–77 (1996)
Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Boulder (1994)
Supe, A., et al.: A study of stress in medical students at seth GS medical college. J. Postgrad. Med. 44(1), 1 (1998)
Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)
Zhang, J., Luo, X., Small, M.: Detecting chaos in pseudoperiodic time series without embedding. Phys. Rev. E 73, 016216 (2006)
Zhang, J., Small, M.: Complex network from pseudoperiodic time series. Phys. Rev. Lett. 96(23), 238701 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pineda, A.M., Rodrigues, F.A. (2021). Complex Networks to Differentiate Elderly and Young People. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-76228-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76227-8
Online ISBN: 978-3-030-76228-5
eBook Packages: Computer ScienceComputer Science (R0)