Abstract
The KEOPS platform applies text mining approaches (e.g. classification, terminology and named entity extraction) to generate knowledge about each text and group of texts extracted from documents, web pages, or databases. KEOPS is currently implemented on real data of a project dedicated to Food security, for which preliminary results are presented.
Supported by Leap4FNSSA H2020 project, SFS-33-2018, grant agreement 817663.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
The multi-layer perceptron uses the default configuration available in the scikit-learn library.
References
Aubin, S., Hamon, T.: Improving term extraction with terminological resources. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 380–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11816508_39
Barbier, M., Cointet, J.P.: Reconstruction of socio-semantic dynamics in sciences-society networks: Methodology and epistemology of large textual corpora analysis. Science and Democracy Network, Annual Meeting (2012)
Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: the c-value/nc-value method. Int. J. Digital Libraries 3(2), 115–130 (2000)
Lossio-Ventura, J., Jonquet, C., Roche, M., Teisseire, M.: Biomedical term extraction: overview and a new methodology. Inf. Retr. J. 19(1–2), 59–99 (2016)
Nedellec, C., Golik, W., Aubin, S., Bossy, R.: Building large lexicalized ontologies from text: a use case in automatic indexing of biotechnology patents. In: Proceedings of EKAW, pp. 514–523 (2010)
Paumier, S.: Unitex - Manuel d’utilisation, November 2011. https://hal.archives-ouvertes.fr/hal-00639621, working paper or preprint
Roche, M., et al.: LEAP4FNSSA (WP3 - KMS): Terminology for KEOPS - Dataverse (2020). http://doi.org/10.18167/DVN1/GQ8DPL
Silberztein, M.: La formalisation des langues : l’approche de NooJ. ISTE, London (2015)
Acknowledgement
We thank the WP3 members of the LEAP4FNSSA project for their contribution to the indexing and classification tasks. We thank Xavier Rouviere for his contribution to the development of the user interface.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Martin, P., Helmer, T., Rabatel, J., Roche, M. (2021). KEOPS: Knowledge ExtractOr Pipeline System. In: Cherfi, S., Perini, A., Nurcan, S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-75018-3_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75017-6
Online ISBN: 978-3-030-75018-3
eBook Packages: Computer ScienceComputer Science (R0)