A Novel Data Set for Information Retrieval on the Basis of Subgraph Matching | SpringerLink
Skip to main content

A Novel Data Set for Information Retrieval on the Basis of Subgraph Matching

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

We are facing the challenge of rapidly increasing amounts of data. Moreover, we observe that in many applications the underlying data contains strongly related entities making graphs the most appropriate structure for data modeling. When data is represented by means of a graph, querying corresponds to a graph matching problem. The present paper introduces a novel graph that models information from the medical domain with about 110,000 nodes and 220,000 edges. Additionally we present several basic benchmark queries, i.e. specific subgraphs, from different categories that can be found multiple times in the medical graph. Both the graph and the benchmark can be used to implement, test, and compare novel graph matching algorithms in a real world scenario.

Supported by Innosuisse Project Nr. 26281.2 PFES-ES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This can be generalized in a straightforward manner.

  2. 2.

    One can define indexes on properties in Neo4j – however, we have omitted this possibility in our evaluation.

References

  1. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly, Springfield (2015)

    Google Scholar 

  2. Kandel, A., Bunke, H., Last, M. (eds.): Applied Graph Theory in Computer Vision and Pattern Recognition. Studies in Computational Intelligence, vol. 52. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68020-8

    Book  MATH  Google Scholar 

  3. Cook, D., Holder, L.: Mining Graph Data. Wiley-Interscience, Hoboken (2007)

    MATH  Google Scholar 

  4. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  5. Brügger, A., Bunke, H., Dickinson, P., Riesen, K.: Generalized graph matching for data mining and information retrieval. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 298–312. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70720-2_23

    Chapter  Google Scholar 

  6. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recognit. Artif. Intell. 28(1) (2014)

    Google Scholar 

  7. Park, C.-S., Lim, S.: Efficient processing of keyword queries over graph databases for finding effective answers. Inf. Proces. Manag. 51(1), 42–57 (2015)

    Article  Google Scholar 

  8. Witschel, H.F., Riesen, K., Grether, L.: KvGR: a graph-based interface for explorative sequential question answering on heterogeneous information sources. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 760–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_50

    Chapter  Google Scholar 

  9. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and subgraph isomorphism benchmarking. In: Proceedings of the 3rd International Workshop on Graph Based Representations in Pattern Recognition, pp. 176–187 (2001)

    Google Scholar 

  10. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR /SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89689-0_33

    Chapter  Google Scholar 

  11. Neuen, D., Schweitzer, P.: Benchmark graphs for practical graph isomorphism. CoRR, abs/1705.03686 (2017)

    Google Scholar 

  12. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.-C.: On the complexity of submap isomorphism and maximum common submap problems. Pattern Recogn. 48(2), 302–316 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspar Riesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riesen, K., Witschel, HF., Grether, L. (2021). A Novel Data Set for Information Retrieval on the Basis of Subgraph Matching. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics