Merits of Mixotrophic Cultivation for Microalgal Biomass Production | SpringerLink
Skip to main content

Merits of Mixotrophic Cultivation for Microalgal Biomass Production

  • Conference paper
  • First Online:
Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020) (SoCPaR 2020)

Abstract

Renewable sources of energy and chemicals are a viable solution in current situation where world is facing extreme energy crisis. Achieving carbon neutral options for energy supply and high productive options for bulk chemicals by renewable source. Microalgal Biomass is a promising option and has the potential to provide renewable energy and products for future grown in minimum inputs and gives higher output. In this review paper three cultivation techniques are discussed such as autotrophic, heterotrophic, and mixotrophic. Mixotrophic cultivation involves combination of both auto and heterotrophic modes where both light reaction and dark reaction are combined for maximum results. Cost effective options of bioenergy and valuable co products are efficiently produced from microalgae in mixotrophic cultivation conditions. Bioprospection of microalgal options for bioenergy and cultivating those strains in mixotrophic conditions combining with wastewater treatment and CO2 fixation from atmosphere to produce biofuel and valuable co products in the main theme of this review. Concept of biorefinery is prescribed for future options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maiti, S., Maiti, D.C., Verma, M., Brar, S.K.: Biobutanol—“a renewable green alternative of liquid fuel” from algae. In: Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. (eds.) Green Fuels Technology, pp. 445–465. Springer, Cham (2016)

    Chapter  Google Scholar 

  2. Feng, Q., Lin, Y.: Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lingo cellulosic biomass: a brief review. Renew. Sustain. Energy Rev. 77, 1272–1287 (2017)

    Article  Google Scholar 

  3. Lyman, R.: Why renewable energy cannot replace fossil fuels by 2050. Energy (2016). https://www.mysearch.org.uk/website2/pdf/2016-Lyman.pdf

  4. Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.-H., Yu, K.L., Mahlia, T.M.I.: Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew. Sustain. Energy Rev. 107, 59–74 (2019)

    Article  Google Scholar 

  5. Ilic, D., Williams, K., Farnish, R., Webb, E., Liu, G.: On the challenges facing the handling of solid biomass feedstocks: on the challenges facing the handling of solid biomass feedstocks. Biofuels Bioprod. Biorefin. 12(2), 187–202 (2018). https://doi.org/10.1002/bbb.1851

    Article  Google Scholar 

  6. Ullah, K., Ahmad, M., Sharma, V.K., Lu, P., Harvey, A., Zafar, M., et al.: Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143, 414–423 (2015)

    Article  Google Scholar 

  7. Thrän, D., Billig, E., Brosowski, A., Klemm, M., Seitz, S.B., Witt, J.: Bioenergy carriers-from smoothly treated biomass towards solid and gaseous biofuels. Chem. Ing. Tech. 90, 68–84 (2018)

    Article  Google Scholar 

  8. Alaswad, A., Dassisti, M., Prescott, T., Olabi, A.: Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 51, 1446–1460 (2015)

    Article  Google Scholar 

  9. Aslan, S., Kapdan, I.K.: Batch kinetics of nitrogen and phosphorus removal from synthetic waste water by algae. Ecol. Eng. 28, 64–70 (2006)

    Article  Google Scholar 

  10. Markou, G., Georgakakis, D.: Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl. Energy 88, 3389–3401 (2011)

    Article  Google Scholar 

  11. Voltolina, D., Gómez-Villa, H., Correa, G.: Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresour. Technol. 96, 359–362 (2005)

    Article  Google Scholar 

  12. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  13. Shi, J., Podola, B., Melkonian, M.: Removal of nitrogen and phosphorus from waste water using microalgae immobilized on twin layers: an experimental study. J. Appl. Phycol. 19, 417–423 (2007)

    Article  Google Scholar 

  14. Abinandan, S., Shanthakumar, S.: Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew. Sust. Energ. Rev. 52, 123–132 (2015)

    Article  Google Scholar 

  15. Karthikeyan, S.: A critical review: microalgae as a renewable source for biofuel production. Int. J. Eng. Res. Technol. 1, 1–6 (2012)

    Google Scholar 

  16. Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Prog. 24(4), 815–820 (2008)

    Google Scholar 

  17. Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008)

    Article  Google Scholar 

  18. Acién Fernández, F.G., Fernández Sevilla, J.M., Molina Grima, E.: Costs analysis of microalgae production, 2nd edn. In: Pandey, A., Chang, J.-S., Soccol, C.R., Lee, D.-J., Chisti, Y. (eds.) Biofuels from Algae, pp. 551–566. Elsevier (2019). https://doi.org/10.1016/B978-0-444-64192-2.00021-4

  19. Ahmed, A.B.A., Adel, M., Karimi, P., Peidayesh, M.: Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates, chap. 10. In: Kim, S.-K. (ed.) Advances in Food and Nutrition Research, Volume 73 of Marine Carbohydrates: Fundamentals and Applications, Part B, pp.197–220. Academic Press (2014)

    Google Scholar 

  20. Arad, S.M., Yaron, A.: Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci. Technol. 3, 92–97 (1992). https://doi.org/10.1016/09242244(92)90145-M.JanISSN0924-2244

    Article  Google Scholar 

  21. Adarme-Vega, T.C., Lim, D.K.Y., Timmins, M., Vernen, F., Li, Y., Schenk, P.M.: Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 11, 96 (2012). https://doi.org/10.1186/1475-2859-11-96

    Article  Google Scholar 

  22. Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 250(2), 207–210 (2007). https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  Google Scholar 

  23. Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech. Lett. 31(7), 1043–1049 (2009)

    Article  Google Scholar 

  24. Lum, K.K., Kim, J., Lei, X.: Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 4(1), 53 (2013)

    Article  Google Scholar 

  25. Andrade, M.R., Costa, J.A.V.: Mixotrophic cultivation of microalga Spirulina platens is using molasses as organic substrate. Aquaculture 264, 130–134 (2007)

    Article  Google Scholar 

  26. Bharathiraja, B., Jayamuthunagai, J., Chakravarthy, M., Ranjith Kumar, R., Yogendran, D., Praveenkumar, R.: Algae: promising future feedstock for biofuels. In: Singh, B., Bauddh, K., Bux, F. (eds.) Algae and Environmental Sustainability, pp. 1–8. Springer India, New Delhi (2015). https://doi.org/10.1007/978-81-322-2641-3_1

    Chapter  Google Scholar 

  27. Borowitzka, M.A.: Culturing microalgae in outdoor ponds. In: Anderson, R.A. (ed.) Algal Culturing Techniques, pp. 205–218. Elsevier, London, UK (2005)

    Google Scholar 

  28. Borowitzka, M.A.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70(1–3), 313–321 (1999)

    Article  Google Scholar 

  29. Brennan, L., Owende, P.: Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Ren. Sus. Energy Rev. 14, 557–577 (2010)

    Article  Google Scholar 

  30. Carvalho, A.P., Meireles, L.A., Malcata, F.X.: Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490–1506 (2006)

    Article  Google Scholar 

  31. Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K.C.: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88, 3425–3431 (2011)

    Article  Google Scholar 

  32. Morita, M., Watanabe, Y., Saiki, H.: Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol. Bioeng. 77, 155–162 (2002)

    Article  Google Scholar 

  33. Hall, D.O.; Fernández, F.A.; Guerrero, E.C.; Rao, K.K.; Grima, E.M. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol. Bioeng. 82, 62–73 (2003). [PubMed]

    Google Scholar 

  34. Fernandez, F., Camacho, F.G., Perez, J., Sevilla, J., Grima, E.M.: Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol. Bioeng. 58, 605–616 (1998)

    Article  Google Scholar 

  35. Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009). https://doi.org/10.1002/bit.22033

    Article  Google Scholar 

  36. Perez-Garcia, O., Escalante, F.M.E., Luz, E., de-Bashan, Yoav Bashan, : Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45(1), 11–36 (2011). https://doi.org/10.1016/j.watres.2010.08.037

    Article  Google Scholar 

  37. Mohammad Mirzaie, M.A., Kalbasi, M., Mousavi, S.M., Ghobadian, B.: Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep BiochemBiotechnol 46, 150–156 (2016)

    Article  Google Scholar 

  38. Bell, G.: Experimental evolution of heterotrophy in a green alga. Evolution 67, 468–476 (2013)

    Article  Google Scholar 

  39. Andruleviciute, V., Makareviciene, V., Skorupskaite, V., Gumbyte, M.: Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol. 26(1), 83–90 (2014). https://doi.org/10.1007/s10811-013-0048-x

    Article  Google Scholar 

  40. Orosa, M., Franqueira, D., Cid, A., Abalde, J.: Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol. Lett. 23, 373–378 (2001)

    Article  Google Scholar 

  41. Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., Guan, B.: Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresour. Technol. 186, 67–73 (2015). https://doi.org/10.1016/j.biortech.2015.02.101

    Article  Google Scholar 

  42. Kong, W.B., Yang, H., Cao, Y.T., Song, H., Hua, S.F., Xia, C.G.: Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol. Biotechnol. 51, 62–99 (2013)

    Google Scholar 

  43. Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., Nie, Z., Qiu, G.: The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl. Microbiol. Biotechnol. 91(3), 835–844 (2011)

    Article  Google Scholar 

  44. Cheirsilp, B., Torpee, S.: Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Biores. Technol. 110, 510–516 (2012). https://doi.org/10.1016/j.biortech.2012.01.125

    Article  Google Scholar 

  45. Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. a response to excess light energy. Plant Physiol. 125(4), 1558–1566 (2001)

    Article  Google Scholar 

  46. Srirangan, K., Pyne, M.E., Perry Chou, C.: Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour. Technol. 102(18), 8589–8604 (2011)

    Article  Google Scholar 

  47. Hervás, M., Navarro, J.A., De la Rosa, M.A.: Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 36, 798–805 (2003)

    Article  Google Scholar 

  48. Buchanan, B.B.: The carbon (formerly dark) reactions of photosynthesis. Photosynth. Res. 128, 215–217 (2016)

    Article  Google Scholar 

  49. Chae, S.R., Hwang, E.J., Shin, H.S.: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97(2), 322–329 (2006)

    Article  Google Scholar 

  50. Ren, H., Tuo, J., Addy, M.M., Zhang, R., Qian, L., Anderson, E., Chen, P., Ruan, R.: Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour. Technol. 245, 1130–1138 (2017)

    Article  Google Scholar 

  51. Mostafa, M., EL-Sheekh, Mohamed Y Bedaiwy, Mohamed E Osman, Mona M Ismail, : Mixotrophic and heterotrophic growth of some microalgae using extract of fungal-treated wheat bran. Int. J. Recycl. Org. Waste Agric. 1(1), 12 (2012)

    Article  Google Scholar 

  52. Li, X., Li, W., Zhai, J., Wei, H.: Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platens is. Bioresour. Technol. 263, 555–561 (2018)

    Article  Google Scholar 

  53. Sharma, Y., Singh, B.: Development of biodiesel: current scenario. Renew. Sustain. Energy Rev. 13, 1646–1651 (2009)

    Article  Google Scholar 

  54. Zhu, L.: Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod. Biorefin. 9, 801–814 (2015)

    Article  Google Scholar 

  55. Gouveia, L., Oliveira, A.C.: Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36, 269–274 (2009)

    Article  Google Scholar 

  56. Zhu, L.D., Hiltunen, E., Antila, E., Zhong, J.J., Yuan, Z.H., Wang, Z.M.: Microalgal biofuels: Flexible bioenergies for sustainable development. Renew. Sustain. Energy Rev. 30, 1035–1046 (2014)

    Article  Google Scholar 

  57. Chen, C.Y., Chang, H.Y., Chang, J.S.: Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int. J. Hydrog. Energy 41, 4413–4420 (2016)

    Article  Google Scholar 

  58. Leite, G.B., Abdelaziz, A.E., Hallenbeck, P.C.: Algal biofuels: challenges and opportunities. Bioresour. Technol. 145, 134–141 (2013)

    Article  Google Scholar 

  59. Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R.D., Drogui, P., et al.: The potential of microalgaein biodiesel production. Renew. Sustain. Energy Rev. 90, 336–346 (2018)

    Article  Google Scholar 

  60. Pittman, J.K., Dean, A.P., Osundeko, O.: The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102(1), 17–25 (2011)

    Article  Google Scholar 

  61. Li, Y., Horsman, M., Wang, B., Nan, W., Lan, C.Q.: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81(4), 629–636 (2008)

    Article  Google Scholar 

  62. Castro, Y.A., Ellis, J.T., Miller, C.D., Sims, R.C.: Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl. Energy 140, 14–19 (2015)

    Article  Google Scholar 

  63. Cheng, H.H., Whang, L.M., Chan, K.C., Chung, M.C., Wu, S.H., Liu, C.P., Tien, S.Y., Chen, S.Y., Chang, J.S., Lee, W.J.: Biological butanol production from microalgae-based biodiesel residues by Clostridiumacetobutylicum. Bioresour. Technol. 184, 379–385 (2015)

    Article  Google Scholar 

  64. Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., Seibert, M.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127–136 (2000)

    Article  Google Scholar 

  65. Eroglu, E., Melis, A.: Microalgal hydrogen production research. Int. J. Hydrog. Energy 41, 12772–12798 (2016)

    Article  Google Scholar 

  66. Wang, Y., Ho, S.H., Cheng, C.L., Guo, W.Q., Nagarajan, D., Ren, N.Q., Lee, D.J., Chang, J.S.: Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour. Technol. 222, 485–497 (2016)

    Article  Google Scholar 

  67. Markou, G., Angelidaki, I., Nerantzis, E., Georgakakis, D.: Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platens is. Energies 6, 3937–3950 (2013)

    Article  Google Scholar 

  68. Lakaniemi, A.M., Tuovinen, O.H., Puhakka, J.A.: Anaerobic conversion of microalgal biomass to sustainable energy carriers—a review. Bioresour. Technol. 135, 222–231 (2013)

    Article  Google Scholar 

  69. Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)

    Article  Google Scholar 

  70. Gonzalez-Fernandez, C., Mandy, A., Ballesteros, I., Ballesteros, M.: Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int. Biodeterior. Biodegrad. 106, 16–23 (2016)

    Article  Google Scholar 

  71. Hernandez, D., Riano, B., Coca, M., Solana, M., Bertucco, A., Garcia-Gonzalez, M.C.: Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem. Eng. J. 285, 449–458 (2016)

    Article  Google Scholar 

  72. Hirano, A., Ueda, R., Hirayama, S.: Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142 (1997)

    Article  Google Scholar 

  73. Raeesossadati, M.J., Ahmadzadeh, H., McHenry, M.P., Moheimani, N.R.: CO2 bioremediation by microalgaein photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 6, 78–85 (2014)

    Article  Google Scholar 

  74. Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S.: Microalgae-based biorefinery—from biofuels to natural products. Bioresour. Technol. 135, 166–174 (2013)

    Article  Google Scholar 

  75. Barrow, C.; Shahidi, F.: Marine Nutraceuticals and Functional Foods. CRC Press, Boca Raton (2007)

    Google Scholar 

  76. Wijesekara, I., Pangestuti, R., Kim, S.K.: Biological activities and potential health benefits of sulphated polysaccharides derived from marine algae. Carbohydr. Polym. 84, 14–21 (2011)

    Article  Google Scholar 

  77. Da Silva Vaz, B., Moreira, J.B., de Morais, M.G., Costa, J.A.V.: Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 7, 73–77 (2016)

    Google Scholar 

  78. Adarme-Vega, T.C., Thomas-Hall, S.R., Schenk, P.M.: Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 26, 14–18 (2014)

    Article  Google Scholar 

  79. Wang, H.M., Chen, C.C., Huynh, P., Chang, J.S.: Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184, 355–362 (2015)

    Google Scholar 

  80. Brown, M., Jeffrey, S., Volkman, J., Dunstan, G.: Nutritional properties of microalgae for mariculture. Aquaculture 151, 315–331 (1997)

    Article  Google Scholar 

  81. Marris, E.: Putting the carbon back: black is the new green. Nature 442, 624–626 (2006)

    Article  Google Scholar 

  82. Guedes, A.C., Amaro, H.M., Malcata, F.X.: Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol. Prog. 27, 597–613 (2011)

    Article  Google Scholar 

  83. Becker, E.: Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Udawat, G., Gandhi, N., Deshmukh, S. (2021). Merits of Mixotrophic Cultivation for Microalgal Biomass Production. In: Abraham, A., et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_61

Download citation

Publish with us

Policies and ethics