Abstract
Renewable sources of energy and chemicals are a viable solution in current situation where world is facing extreme energy crisis. Achieving carbon neutral options for energy supply and high productive options for bulk chemicals by renewable source. Microalgal Biomass is a promising option and has the potential to provide renewable energy and products for future grown in minimum inputs and gives higher output. In this review paper three cultivation techniques are discussed such as autotrophic, heterotrophic, and mixotrophic. Mixotrophic cultivation involves combination of both auto and heterotrophic modes where both light reaction and dark reaction are combined for maximum results. Cost effective options of bioenergy and valuable co products are efficiently produced from microalgae in mixotrophic cultivation conditions. Bioprospection of microalgal options for bioenergy and cultivating those strains in mixotrophic conditions combining with wastewater treatment and CO2 fixation from atmosphere to produce biofuel and valuable co products in the main theme of this review. Concept of biorefinery is prescribed for future options.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Maiti, S., Maiti, D.C., Verma, M., Brar, S.K.: Biobutanol—“a renewable green alternative of liquid fuel” from algae. In: Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. (eds.) Green Fuels Technology, pp. 445–465. Springer, Cham (2016)
Feng, Q., Lin, Y.: Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lingo cellulosic biomass: a brief review. Renew. Sustain. Energy Rev. 77, 1272–1287 (2017)
Lyman, R.: Why renewable energy cannot replace fossil fuels by 2050. Energy (2016). https://www.mysearch.org.uk/website2/pdf/2016-Lyman.pdf
Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.-H., Yu, K.L., Mahlia, T.M.I.: Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew. Sustain. Energy Rev. 107, 59–74 (2019)
Ilic, D., Williams, K., Farnish, R., Webb, E., Liu, G.: On the challenges facing the handling of solid biomass feedstocks: on the challenges facing the handling of solid biomass feedstocks. Biofuels Bioprod. Biorefin. 12(2), 187–202 (2018). https://doi.org/10.1002/bbb.1851
Ullah, K., Ahmad, M., Sharma, V.K., Lu, P., Harvey, A., Zafar, M., et al.: Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143, 414–423 (2015)
Thrän, D., Billig, E., Brosowski, A., Klemm, M., Seitz, S.B., Witt, J.: Bioenergy carriers-from smoothly treated biomass towards solid and gaseous biofuels. Chem. Ing. Tech. 90, 68–84 (2018)
Alaswad, A., Dassisti, M., Prescott, T., Olabi, A.: Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 51, 1446–1460 (2015)
Aslan, S., Kapdan, I.K.: Batch kinetics of nitrogen and phosphorus removal from synthetic waste water by algae. Ecol. Eng. 28, 64–70 (2006)
Markou, G., Georgakakis, D.: Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl. Energy 88, 3389–3401 (2011)
Voltolina, D., Gómez-Villa, H., Correa, G.: Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresour. Technol. 96, 359–362 (2005)
Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)
Shi, J., Podola, B., Melkonian, M.: Removal of nitrogen and phosphorus from waste water using microalgae immobilized on twin layers: an experimental study. J. Appl. Phycol. 19, 417–423 (2007)
Abinandan, S., Shanthakumar, S.: Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew. Sust. Energ. Rev. 52, 123–132 (2015)
Karthikeyan, S.: A critical review: microalgae as a renewable source for biofuel production. Int. J. Eng. Res. Technol. 1, 1–6 (2012)
Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Prog. 24(4), 815–820 (2008)
Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008)
Acién Fernández, F.G., Fernández Sevilla, J.M., Molina Grima, E.: Costs analysis of microalgae production, 2nd edn. In: Pandey, A., Chang, J.-S., Soccol, C.R., Lee, D.-J., Chisti, Y. (eds.) Biofuels from Algae, pp. 551–566. Elsevier (2019). https://doi.org/10.1016/B978-0-444-64192-2.00021-4
Ahmed, A.B.A., Adel, M., Karimi, P., Peidayesh, M.: Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates, chap. 10. In: Kim, S.-K. (ed.) Advances in Food and Nutrition Research, Volume 73 of Marine Carbohydrates: Fundamentals and Applications, Part B, pp.197–220. Academic Press (2014)
Arad, S.M., Yaron, A.: Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci. Technol. 3, 92–97 (1992). https://doi.org/10.1016/09242244(92)90145-M.JanISSN0924-2244
Adarme-Vega, T.C., Lim, D.K.Y., Timmins, M., Vernen, F., Li, Y., Schenk, P.M.: Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 11, 96 (2012). https://doi.org/10.1186/1475-2859-11-96
Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 250(2), 207–210 (2007). https://doi.org/10.1016/j.biotechadv.2006.11.002
Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech. Lett. 31(7), 1043–1049 (2009)
Lum, K.K., Kim, J., Lei, X.: Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 4(1), 53 (2013)
Andrade, M.R., Costa, J.A.V.: Mixotrophic cultivation of microalga Spirulina platens is using molasses as organic substrate. Aquaculture 264, 130–134 (2007)
Bharathiraja, B., Jayamuthunagai, J., Chakravarthy, M., Ranjith Kumar, R., Yogendran, D., Praveenkumar, R.: Algae: promising future feedstock for biofuels. In: Singh, B., Bauddh, K., Bux, F. (eds.) Algae and Environmental Sustainability, pp. 1–8. Springer India, New Delhi (2015). https://doi.org/10.1007/978-81-322-2641-3_1
Borowitzka, M.A.: Culturing microalgae in outdoor ponds. In: Anderson, R.A. (ed.) Algal Culturing Techniques, pp. 205–218. Elsevier, London, UK (2005)
Borowitzka, M.A.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70(1–3), 313–321 (1999)
Brennan, L., Owende, P.: Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Ren. Sus. Energy Rev. 14, 557–577 (2010)
Carvalho, A.P., Meireles, L.A., Malcata, F.X.: Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490–1506 (2006)
Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K.C.: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88, 3425–3431 (2011)
Morita, M., Watanabe, Y., Saiki, H.: Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol. Bioeng. 77, 155–162 (2002)
Hall, D.O.; Fernández, F.A.; Guerrero, E.C.; Rao, K.K.; Grima, E.M. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol. Bioeng. 82, 62–73 (2003). [PubMed]
Fernandez, F., Camacho, F.G., Perez, J., Sevilla, J., Grima, E.M.: Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol. Bioeng. 58, 605–616 (1998)
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009). https://doi.org/10.1002/bit.22033
Perez-Garcia, O., Escalante, F.M.E., Luz, E., de-Bashan, Yoav Bashan, : Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45(1), 11–36 (2011). https://doi.org/10.1016/j.watres.2010.08.037
Mohammad Mirzaie, M.A., Kalbasi, M., Mousavi, S.M., Ghobadian, B.: Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep BiochemBiotechnol 46, 150–156 (2016)
Bell, G.: Experimental evolution of heterotrophy in a green alga. Evolution 67, 468–476 (2013)
Andruleviciute, V., Makareviciene, V., Skorupskaite, V., Gumbyte, M.: Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol. 26(1), 83–90 (2014). https://doi.org/10.1007/s10811-013-0048-x
Orosa, M., Franqueira, D., Cid, A., Abalde, J.: Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol. Lett. 23, 373–378 (2001)
Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., Guan, B.: Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresour. Technol. 186, 67–73 (2015). https://doi.org/10.1016/j.biortech.2015.02.101
Kong, W.B., Yang, H., Cao, Y.T., Song, H., Hua, S.F., Xia, C.G.: Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol. Biotechnol. 51, 62–99 (2013)
Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., Nie, Z., Qiu, G.: The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl. Microbiol. Biotechnol. 91(3), 835–844 (2011)
Cheirsilp, B., Torpee, S.: Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Biores. Technol. 110, 510–516 (2012). https://doi.org/10.1016/j.biortech.2012.01.125
Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. a response to excess light energy. Plant Physiol. 125(4), 1558–1566 (2001)
Srirangan, K., Pyne, M.E., Perry Chou, C.: Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour. Technol. 102(18), 8589–8604 (2011)
Hervás, M., Navarro, J.A., De la Rosa, M.A.: Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 36, 798–805 (2003)
Buchanan, B.B.: The carbon (formerly dark) reactions of photosynthesis. Photosynth. Res. 128, 215–217 (2016)
Chae, S.R., Hwang, E.J., Shin, H.S.: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97(2), 322–329 (2006)
Ren, H., Tuo, J., Addy, M.M., Zhang, R., Qian, L., Anderson, E., Chen, P., Ruan, R.: Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour. Technol. 245, 1130–1138 (2017)
Mostafa, M., EL-Sheekh, Mohamed Y Bedaiwy, Mohamed E Osman, Mona M Ismail, : Mixotrophic and heterotrophic growth of some microalgae using extract of fungal-treated wheat bran. Int. J. Recycl. Org. Waste Agric. 1(1), 12 (2012)
Li, X., Li, W., Zhai, J., Wei, H.: Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platens is. Bioresour. Technol. 263, 555–561 (2018)
Sharma, Y., Singh, B.: Development of biodiesel: current scenario. Renew. Sustain. Energy Rev. 13, 1646–1651 (2009)
Zhu, L.: Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod. Biorefin. 9, 801–814 (2015)
Gouveia, L., Oliveira, A.C.: Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36, 269–274 (2009)
Zhu, L.D., Hiltunen, E., Antila, E., Zhong, J.J., Yuan, Z.H., Wang, Z.M.: Microalgal biofuels: Flexible bioenergies for sustainable development. Renew. Sustain. Energy Rev. 30, 1035–1046 (2014)
Chen, C.Y., Chang, H.Y., Chang, J.S.: Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int. J. Hydrog. Energy 41, 4413–4420 (2016)
Leite, G.B., Abdelaziz, A.E., Hallenbeck, P.C.: Algal biofuels: challenges and opportunities. Bioresour. Technol. 145, 134–141 (2013)
Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R.D., Drogui, P., et al.: The potential of microalgaein biodiesel production. Renew. Sustain. Energy Rev. 90, 336–346 (2018)
Pittman, J.K., Dean, A.P., Osundeko, O.: The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102(1), 17–25 (2011)
Li, Y., Horsman, M., Wang, B., Nan, W., Lan, C.Q.: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81(4), 629–636 (2008)
Castro, Y.A., Ellis, J.T., Miller, C.D., Sims, R.C.: Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl. Energy 140, 14–19 (2015)
Cheng, H.H., Whang, L.M., Chan, K.C., Chung, M.C., Wu, S.H., Liu, C.P., Tien, S.Y., Chen, S.Y., Chang, J.S., Lee, W.J.: Biological butanol production from microalgae-based biodiesel residues by Clostridiumacetobutylicum. Bioresour. Technol. 184, 379–385 (2015)
Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., Seibert, M.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127–136 (2000)
Eroglu, E., Melis, A.: Microalgal hydrogen production research. Int. J. Hydrog. Energy 41, 12772–12798 (2016)
Wang, Y., Ho, S.H., Cheng, C.L., Guo, W.Q., Nagarajan, D., Ren, N.Q., Lee, D.J., Chang, J.S.: Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour. Technol. 222, 485–497 (2016)
Markou, G., Angelidaki, I., Nerantzis, E., Georgakakis, D.: Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platens is. Energies 6, 3937–3950 (2013)
Lakaniemi, A.M., Tuovinen, O.H., Puhakka, J.A.: Anaerobic conversion of microalgal biomass to sustainable energy carriers—a review. Bioresour. Technol. 135, 222–231 (2013)
Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)
Gonzalez-Fernandez, C., Mandy, A., Ballesteros, I., Ballesteros, M.: Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int. Biodeterior. Biodegrad. 106, 16–23 (2016)
Hernandez, D., Riano, B., Coca, M., Solana, M., Bertucco, A., Garcia-Gonzalez, M.C.: Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem. Eng. J. 285, 449–458 (2016)
Hirano, A., Ueda, R., Hirayama, S.: Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142 (1997)
Raeesossadati, M.J., Ahmadzadeh, H., McHenry, M.P., Moheimani, N.R.: CO2 bioremediation by microalgaein photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 6, 78–85 (2014)
Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S.: Microalgae-based biorefinery—from biofuels to natural products. Bioresour. Technol. 135, 166–174 (2013)
Barrow, C.; Shahidi, F.: Marine Nutraceuticals and Functional Foods. CRC Press, Boca Raton (2007)
Wijesekara, I., Pangestuti, R., Kim, S.K.: Biological activities and potential health benefits of sulphated polysaccharides derived from marine algae. Carbohydr. Polym. 84, 14–21 (2011)
Da Silva Vaz, B., Moreira, J.B., de Morais, M.G., Costa, J.A.V.: Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 7, 73–77 (2016)
Adarme-Vega, T.C., Thomas-Hall, S.R., Schenk, P.M.: Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 26, 14–18 (2014)
Wang, H.M., Chen, C.C., Huynh, P., Chang, J.S.: Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184, 355–362 (2015)
Brown, M., Jeffrey, S., Volkman, J., Dunstan, G.: Nutritional properties of microalgae for mariculture. Aquaculture 151, 315–331 (1997)
Marris, E.: Putting the carbon back: black is the new green. Nature 442, 624–626 (2006)
Guedes, A.C., Amaro, H.M., Malcata, F.X.: Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol. Prog. 27, 597–613 (2011)
Becker, E.: Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Udawat, G., Gandhi, N., Deshmukh, S. (2021). Merits of Mixotrophic Cultivation for Microalgal Biomass Production. In: Abraham, A., et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_61
Download citation
DOI: https://doi.org/10.1007/978-3-030-73689-7_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73688-0
Online ISBN: 978-3-030-73689-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)