Abstract
In recent years, digital watermarking technology has been widely used to solve the protection of privacy issues in medical images. However, the existing algorithms are failed to solve the protection problems against geometric attacks. To solve this problem, a robust digital watermarking algorithm for medical images based on PHTs-DCT is proposed in this paper. For embedding watermark, DCT is applied to reduce the redundant data of the image, then the coefficients are calculated via PHTs and the DCT to construct a binary feature sequence. Moreover, the watermark information is encrypted by Logistic mapping, and the zero watermark is constructed and stored in a third party medical image protection database. Extensive experiments have shown that the proposed algorithm has good robustness to geometric attacks and common attacks, especially anti-translation, rotation, and compression attacks.
This work was supported in part by the Hainan Provincial Natural Science Foundation of China under Grant 2019RC018 and by the Natural Science Foundation of China under Grant 62063004 and 61762033, in part by the Hainan Provincial Higher Education Research Project under Grant Hnky2019-73, and in part by the Key Research Project of Haikou College of Economics under Grant HJKZ18-01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kang, X.B., Zhao, F., Lin, G.F., Chen, Y.J.: A novel hybrid of DCT and SVD in dwt domain for robust and invisible blind image watermarking with optimal embedding strength. Multimed. Tools Appl. 77(11), 13197–13224 (2018). https://doi.org/10.1007/s11042-017-4941-1
Ko, H.J., Huang, C.T., Horng, G., Wang, S.J.: Robust and blind image watermarking in DCT domain using inter-block coefficient correlation. Inf. Sci. 517, 128–147 (2019)
Li, L., Li, S., Wang, G., Abraham, A.: An evaluation on circularly orthogonal moments for image representation. In: International Conference on Information Science and Technology, pp. 394–397. IEEE (2011)
Lin, Q.W.: DWT and signal energy based zero-watermarking algorithm for text image. In: Advanced Materials Research, vol. 631, pp. 1313–1317. Trans Tech Publications (2013)
Liu, J., Li, J., Ma, J., Sadiq, N., Bhatti, U.A., Ai, Y.: A robust multi-watermarking algorithm for medical images based on DTCWT-DCT and Henon map. Appl. Sci. 9(4), 700 (2019)
Lutovac, B., Daković, M., Stanković, S., Orović, I.: An algorithm for robust image watermarking based on the DCT and Zernike moments. Multimed. Tools Appl. 76(22), 23333–23352 (2017). https://doi.org/10.1007/s11042-016-4127-2
Munib, S., Khan, A.: Robust image watermarking technique using triangular regions and Zernike moments for quantization based embedding. Multimed. Tools Appl. 76(6), 8695–8710 (2017). https://doi.org/10.1007/s11042-016-3485-0
Navas, K.A., Sasikumar, M.: Survey of medical image watermarking algorithms (2007)
Pang, J.P., Wang, A.L., Zhu, X.F., Guo, L., Liu, F.P.: A holographic image robust watermarking algorithm based on DWT-sift and neural network model. In: IOP Conference Series Materials Science and Engineering, vol. 563, p. 052088 (2019)
Parah, S.A., Sheikh, J.A., Akhoon, J.A., Loan, N.A., Bhat, G.M.: Information hiding in edges: a high capacity information hiding technique using hybrid edge detection. Multimed. Tools Appl. 77(1), 185–207 (2016). https://doi.org/10.1007/s11042-016-4253-x
Singh, C., Kaur, A.: Fast computation of polar harmonic transforms. J. Real-Time Image Process. 10(1), 59–66 (2012). https://doi.org/10.1007/s11554-012-0252-y
Singh, R., Ashok, A., Saraswat, M.: An optimized robust watermarking technique using CKGSA in DCT-SVD domain. IET Image Process. 14(10), 1015–10261026 (2020)
Singh, S.P., Urooj, S.: A new computational framework for fast computation of a class of polar harmonic transforms. J. Signal Process. Syst. 91(8), 915–922 (2019). https://doi.org/10.1007/s11265-018-1417-0
Sk, A., Masilamani, V.: A novel digital watermarking scheme for data authentication and copyright protection in 5G networks. Comput. Electr. Eng. 72, 589–605 (2018)
Tang, Z.Z., et al.: Robust image hashing via random Gabor filtering and DWT. Comput. Mater. Continua 55(2), 331–344 (2018)
Wang, S., Cui, C., Niu, X.: Watermarking for DIBR 3D images based on sift feature points. Measurement 48, 54–62 (2014)
Wang, X.Y., Hou, L.M.: A new robust digital image watermarking based on pseudo-Zernike moments. Multidimension. Syst. Signal Process. 21(2), 179–196 (2010). https://doi.org/10.1007/s11045-009-0096-1
Yap, P.T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2009)
Zhao, H., Du, S., Zhang, D.: Zero-watermark scheme for 2D vector drawings based on mapping. In: 2013 International Conference on Information Science and Cloud Computing Companion, pp. 601–605. IEEE (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yi, D. et al. (2021). A Robust Digital Watermarking for Medical Images Based on PHTs-DCT. In: Cheng, J., Tang, X., Liu, X. (eds) Cyberspace Safety and Security. CSS 2020. Lecture Notes in Computer Science(), vol 12653. Springer, Cham. https://doi.org/10.1007/978-3-030-73671-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-73671-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73670-5
Online ISBN: 978-3-030-73671-2
eBook Packages: Computer ScienceComputer Science (R0)