ESTI: Efficient k-Hop Reachability Querying over Large General Directed Graphs | SpringerLink
Skip to main content

ESTI: Efficient k-Hop Reachability Querying over Large General Directed Graphs

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2021 International Workshops (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12680))

Included in the following conference series:

  • 1240 Accesses

Abstract

As a fundamental task in graph data mining, answering k-hop reachability queries is useful in many applications such as analysis of social networks and biological networks. Most of the existing methods for processing such queries can only deal with directed acyclic graphs (DAGs). However, cycles are ubiquitous in lots of real-world graphs. Furthermore, they may require unacceptable indexing space or expensive online search time when the input graph becomes very large. In order to solve k-hop reachability queries for large general directed graphs, we propose a practical and efficient method named ESTI (Extended Spanning Tree Index). It constructs an extended spanning tree in the offline phase and speeds up online querying based on three carefully designed pruning rules over the built index. Extensive experiments show that ESTI significantly outperforms the state-of-art in online querying, while ensuring a linear index size and stable index construction time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, J., Shang, Z., Cheng, H., Wang, H., Yu, J.X.: K-reach: who is in your small world. CoRR abs/1208.0090 (2012)

    Google Scholar 

  2. Cheng, J., Shang, Z., Cheng, H., Wang, H., Yu, J.X.: Efficient processing of k-hop reachability queries. VLDB J. 23(2), 227–252 (2014)

    Article  Google Scholar 

  3. Du, M., Yang, A., Zhou, J., Tang, X., Chen, Z., Zuo, Y.: HT: a novel labeling scheme for k-hop reachability queries on DAGs. IEEE Access 7, 172110–172122 (2019)

    Article  Google Scholar 

  4. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very large directed graphs. In: SIGMOD 2008, pp. 595–608 (2008)

    Google Scholar 

  5. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection

    Google Scholar 

  6. van Schaik, S.J., de Moor, O.: A memory efficient reachability data structure through bit vector compression. In: SIGMOD 2011, pp. 913–924 (2011)

    Google Scholar 

  7. Seufert, S., Anand, A., Bedathur, S., Weikum, G.: Ferrari: flexible and efficient reachability range assignment for graph indexing (2013)

    Google Scholar 

  8. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster? IEEE Trans. Knowl. Data Eng. 29(3), 683–697 (2017)

    Article  Google Scholar 

  9. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: SIGMOD 2007, pp. 845–856 (2007)

    Google Scholar 

  10. Veloso, R.R., Cerf, L., Meira Jr., W., Zaki, M.J.: Reachability queries in very large graphs: a fast refined online search approach. In: EDBT, pp. 511–522 (2014)

    Google Scholar 

  11. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permutation labeling approach. Proc. VLDB Endow. 7(12), 1191–1202 (2014)

    Article  Google Scholar 

  12. Xie, X., Yang, X., Wang, X., Jin, H., Wang, D., Ke, X.: BFSI-B: an improved k-hop graph reachability queries for cyber-physical systems. Inf. Fusion 38, 35–42 (2017)

    Article  Google Scholar 

  13. Yildirim, H., Chaoji, V., Zaki, M.: Grail: a scalable index for reachability queries in very large graphs. VLDB J. 21, 1–26 (2012)

    Article  Google Scholar 

  14. Zhou, L., Chen, R., Xia, Y., Teodorescu, R.: C-graph: a highly efficient concurrent graph reachability query framework. In: ICPP, pp. 79:1–79:10. ACM (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61902074) and Science and Technology Committee Shanghai Municipality (Grant No. 19ZR1404900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y., Zheng, W. (2021). ESTI: Efficient k-Hop Reachability Querying over Large General Directed Graphs. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021 International Workshops. DASFAA 2021. Lecture Notes in Computer Science(), vol 12680. Springer, Cham. https://doi.org/10.1007/978-3-030-73216-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73216-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73215-8

  • Online ISBN: 978-3-030-73216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics