Deep Attributed Network Embedding Based on the PPMI | SpringerLink
Skip to main content

Deep Attributed Network Embedding Based on the PPMI

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2021 International Workshops (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12680))

Included in the following conference series:

  • 1195 Accesses

Abstract

The attributed network embedding aims to learn the latent low-dimensional representations of nodes, while preserving the neighborhood relationship of nodes in the network topology as well as the similarities of attribute features. In this paper, we propose a deep model based on the positive point-wise mutual information (PPMI) for attributed network embedding. In our model, attribute features are transformed into an attribute graph, such that attribute features and network topology can be handled in the same way. Then, we perform the random surfing and calculate the PPMI on the attribute/topology graph to effectively maintain the structural characteristics and the high-order proximity information. The node representations are learned by a shared Auto-Encoder. Besides, the local pairwise constraint is used in the shared Auto-Encoder to improve the quality of node representations. Extensive experimental results on four real-world networks show the superior performance of the proposed model over the 10 baselines.

Supported by the National Natural Science Foundation of China (61762090, ,62062066, 61966036, and 61662086), the Natural Science Foundation of Yunnan Province (2016FA026), the Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN), and the National Social Science Foundation of China (18XZZ005).

K. Dong and T. Huang—Both authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)

    Google Scholar 

  2. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)

    Google Scholar 

  4. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)

    Google Scholar 

  5. Dong, K., Zhou, L., Kong, B., Zhou, J.: A dual fusion model for attributed network embedding. In: Li, G., Shen, H.T., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds.) KSEM 2020, Part I. LNCS (LNAI), vol. 12274, pp. 86–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55130-8_8

    Chapter  Google Scholar 

  6. Gao, H., Huang, H.: Deep attributed network embedding. In: IJCAI, pp. 3364–3370 (2018)

    Google Scholar 

  7. Gao, X., Chen, J., Zhan, Z., Yang, S.: Learning heterogeneous information network embeddings via relational triplet network. Neurocomputing 412, 31–41 (2020)

    Article  Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  9. Huang, T., Zhou, L., Wang, L., Du, G., Lü, K.: Attributed network embedding with community preservation. In: DSAA, pp. 334–343 (2020)

    Google Scholar 

  10. Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: SIAM, pp. 633–641 (2017)

    Google Scholar 

  11. Jin, D., Ge, M., Yang, L., He, D., Wang, L., Zhang, W.: Integrative network embedding via deep joint reconstruction. In: IJCAI, pp. 3407–3413 (2018)

    Google Scholar 

  12. Liao, L., He, X., Zhang, H., Chua, T.: Attributed social network embedding. IEEE Trans. Knowl. Data Eng. 30(12), 2257–2270 (2018)

    Article  Google Scholar 

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  14. Mo, J., Gao, N., Zhou, Y., Pei, Y., Wang, J.: NANE: attributed network embedding with local and global information. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018, Part I. LNCS, vol. 11233, pp. 247–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02922-7_17

    Chapter  Google Scholar 

  15. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD, pp. 701–710 (2014)

    Google Scholar 

  16. Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using dynamic t-SNE. In: EuroVis - Short Papers, pp. 73–77 (2016)

    Google Scholar 

  17. Ribeiro, L.F.R., Saverese, P.H.P., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Knowledge Discovery and Data Mining, pp. 385–394 (2017)

    Google Scholar 

  18. Ruan, J., Dean, A.K., Zhang, W.: A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4, 8 (2010)

    Article  Google Scholar 

  19. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  20. Tu, C., Liu, H., Liu, Z., Sun, M.: CANE: context-aware network embedding for relation modeling. In: ACL, Volume 1: Long Papers, pp. 1722–1731 (2017)

    Google Scholar 

  21. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  22. Wang, Z., Liu, H., Du, Y., Wu, Z., Zhang, X.: Unified embedding model over heterogeneous information network for personalized recommendation. In: IJCAI, pp. 3813–3819 (2019)

    Google Scholar 

  23. Weigend, A.S., Rumelhart, D.E., Huberman, B.A.: Generalization by weight-elimination with application to forecasting. In: NIPS, pp. 875–882 (1990)

    Google Scholar 

  24. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)

    Google Scholar 

  25. Yang, Y., Chen, H., Shao, J.: Triplet enhanced autoencoder: model-free discriminative network embedding. In: IJCAI, pp. 5363–5369 (2019)

    Google Scholar 

  26. Yu, G., Wang, Y., Wang, J., Domeniconi, C., Guo, M., Zhang, X.: Attributed heterogeneous network fusion via collaborative matrix tri-factorization. Inf. Fusion 63, 153–165 (2020)

    Article  Google Scholar 

  27. Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural networks. In: IJCAI, pp. 3155–3161 (2018)

    Google Scholar 

  28. Zhou, L., Lü, K., Yang, P., Wang, L., Kong, B.: An approach for overlapping and hierarchical community detection in social networks based on coalition formation game theory. Expert Syst. Appl. 42(24), 9634–9646 (2015)

    Article  Google Scholar 

  29. Zhou, S., et al.: PRRE: personalized relation ranking embedding for attributed networks. In: CIKM, pp. 823–832 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, K., Huang, T., Zhou, L., Wang, L., Chen, H. (2021). Deep Attributed Network Embedding Based on the PPMI. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021 International Workshops. DASFAA 2021. Lecture Notes in Computer Science(), vol 12680. Springer, Cham. https://doi.org/10.1007/978-3-030-73216-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73216-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73215-8

  • Online ISBN: 978-3-030-73216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics