Abstract
Context and Motivation: In large projects, extracting the relevant NFR-information as per the stakeholder’s responsibility and needs can be time-consuming and challenging. Question/Problem: Classification of NFRs is one way to mitigate this problem. However, because of the size and complexity of the SRS, the manual classification of NFRs is considered time-consuming, labour-intensive, and error-prone. An automated solution is needed that provides a reliable and efficient classification of NFRs. Principal ideas/results: Using natural language processing and supervised machine learning (SML) algorithms, we investigate feature extraction techniques (i.e., POS-tagging based, BoW, and TF-IDF) to assess their efficacy in automated classification, in conjunction with the SML algorithms (such as: SVM, SGD SVM, LR, DT, Bagging DT, Extra Tree, RF, GNB, MNB, and BNB). Contribution: The proposed combinations: (i) SVM with TF-IDF, (ii) LR with POS and BoW, and (iii) MNB with BoW, all achieve precision and recall values greater than 0.85, and process execution time of less than 0.1 s. Comparison with related work is favourable as is preliminary validation using an industry dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nekvi, I., Madhavji, N.H.: Impediments to requirements-compliance in contractual systems engineering projects: a case study. ACM Trans. Manage. Inf. Syst. 5(3), 15, 1–35 (2014)
Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional requirements. Requirements Eng. 12(2), 103–120 (2007). https://doi.org/10.1007/s00766-007-0045-1
Zhang, W., Yang, Y., Wang, Q., Shu, F.: An empirical study on classification of non-functional requirements. In: Proceedings of the 23rd International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 190–195 (2011)
Lu, M., Liang, P.: Automatic classification of non-functional requirements from augmented app user reviews. In: Proceedings of the 21st Int. Conference on Evaluation and Assessment in Software Engineering, June 2017, pp. 344–353 (2017)
Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley, New York (1997)
Slankas, J., Williams, L.: Automated extraction of non-functional requirements in avail able documentation. In: Proceedings IEEE 1st Workshop NaturaLiSE, pp. 9–16 (2013)
Hussain, I., Kosseim, L., Ormandjieva, O.: Using linguistic knowledge to classify non-functional requirements in SRS documents. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 287–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69858-6_28
Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput. 21(5), 61–72 (1988)
Acknowledgments
This work is supported, in part, by Natural Science and Engineering Research Council (NSERC) of Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
EzzatiKarami, M., Madhavji, N.H. (2021). Automatically Classifying Non-functional Requirements with Feature Extraction and Supervised Machine Learning Techniques: A Research Preview. In: Dalpiaz, F., Spoletini, P. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2021. Lecture Notes in Computer Science(), vol 12685. Springer, Cham. https://doi.org/10.1007/978-3-030-73128-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-73128-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73127-4
Online ISBN: 978-3-030-73128-1
eBook Packages: Computer ScienceComputer Science (R0)