Abstract
The simplest class of structures formed by \(N\ge 2\) interacting RNAs consists of all crossing-free base pairs formed over linear arrangements of the constituent RNA sequences. For each permutation of the N strands the structure prediction problem is algorithmically very similar – but not identical – to folding of a single, contiguous RNA. The differences arise from two sources: First, “nicks”, i.e., the transitions from one to the next piece of RNA, need to be treated with special care. Second, the connectedness of the structures needs to guaranteed. For the forward recursions, i.e., the computation of folding energies or partition functions, these modifications are rather straightforward and retain the cubic time complexity of the well-known folding algorithms. This is not the case for a straightforward implementation of the corresponding outside recursion, which becomes quartic. Cubic running times, however, can be restored by introducing linear-size auxiliary arrays. Asymptotically, the extra effort over the corresponding algorithms for a single RNA sequence of the same length is negligible in both time and space. An implementation within the framework of the ViennaRNA package conforms to the theoretical performance bounds and provides access to several algorithmic variants, include the handling of user-defined hard and soft constraints.
An earlier version of this contribution appeared in the Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 3: Bioinformatics [26]. This work was supported in part by the German Federal Ministry of Education and Research (BMBF, project no. 031A538A, de.NBI-RBC, to PFS and project no. 031L0164C, RNAProNet, to PFS), and the Austrian science fund FWF (project no. I 2874 “Prediction of RNA-RNA interactions”, project no. F 80 “RNAdeco” to ILH).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alkan, C., Karakoç, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.Z.: RNA-RNA interaction prediction and antisense RNA target search. J. Comput. Biol. 13, 267–282 (2006). https://doi.org/10.1089/cmb.2006.13.267
Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345, 987–1001 (2005). https://doi.org/10.1016/j.jmb.2004.10.082
Badelt, S., Grun, C., Sarma, K.V., Wolfe, B., Shin, S.W., Winfree, E.: A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. J. R. Soc. Interface 17, 20190866 (2020). https://doi.org/10.1098/rsif.2019.0866
Bernhart, S.H., Mückstein, U., Hofacker, I.L.: RNA accessibility in cubic time. Algorithms Mol. Biol. 6, 3 (2011). https://doi.org/10.1186/1748-7188-6-3
Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Hofacker, I.L.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1, 3 (2006). https://doi.org/10.1186/1748-7188-1-3
Bindewald, E., Afonin, K., Jaeger, L., Shapiro, B.A.: Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano 5, 9542–9551 (2011). https://doi.org/10.1021/nn202666w
Busch, A., Richter, A., Backofen, R.: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856 (2008). https://doi.org/10.1093/bioinformatics/btn544
Chappell, J., Watters, K.E., Takahashi, M.K., Lucks, J.B.: A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr. Opin. Chem. Biol. 28, 47–56 (2015). https://doi.org/10.1016/j.cbpa.2015.05.018
Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25, i365–i373 (2009). https://doi.org/10.1093/bioinformatics/btp212
Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87, 215–226 (2004). https://doi.org/10.1529/biophysj.103.020743
Ding, Y., Chan, C.Y., Lawrence, C.E.: Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135–W141 (2004). https://doi.org/10.1093/nar/gkh449
Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007). https://doi.org/10.1137/060651100
Durand, G., et al.: A combinatorial approach to the repertoire of RNA kissing motifs; towards multiplex detection by switching hairpin aptamers. Nucleic Acids Res. 44, 4450–4459 (2016). https://doi.org/10.1093/nar/gkw206
Dutta, T., Srivastava, S.: Small RNA-mediated regulation in bacteria: a growing palette of diverse mechanisms. Gene 656, 60–72 (2018). https://doi.org/10.1016/j.gene.2018.02.068
Forties, R.A., Bundschuh, R.: Modeling the interplay of single stranded binding proteins and nucleic acid secondary structure. Bioinformatics 26, 61–67 (2010). https://doi.org/10.1093/bioinformatics/btp627
Gong, J., Ju, Y., Shao, D., Zhang, Q.C.: Advances and challenges towards the study of RNA-RNA interactions in a transcriptome-wide scale. Quant. Biol. 6(3), 239–252 (2018). https://doi.org/10.1007/s40484-018-0146-5
Guil, S., Esteller, M.: RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem. Sci. 40, 248–256 (2015). https://doi.org/10.1016/j.tibs.2015.03.001
Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125, 167–188 (1994). https://doi.org/10.1007/BF00818163
Hofacker, I.L., Reidys, C.M., Stadler, P.F.: Symmetric circular matchings and RNA folding. Discret. Math. 312, 100–112 (2012). https://doi.org/10.1016/j.disc.2011.06.004
Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25, 2646–2654 (2009). https://doi.org/10.1093/bioinformatics/btp481
Isaacs, F.J., Dwyer, D.J., Collins, J.J.: RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006). https://doi.org/10.1038/nbt1208
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009). /http://dlib.net/
Legendre, A., Angel, E., Tahi, F.: RCPred: RNA complex prediction as a constrained maximum weight clique problem. BMC Bioinform. 20, 128 (2019). https://doi.org/10.1186/s12859-019-2648-1
Lorenz, R., et al.: 2D meets 4G: G-quadruplexes in RNA secondary structure prediction. IEEE Trans. Comput. Biol. Bioinf. 10, 832–844 (2013). https://doi.org/10.1109/TCBB.2013.7
Lorenz, R., et al.: ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26
Lorenz, R., Flamm, C., Hofacker, I.L., Stadler, P.F.: Efficient computation of base-pairing probabilities in multi-strand RNA folding. In: de Maria, E., Fred, A., Gamboa, H. (eds.) Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 3: Bioinformatics. pp. 23–31. Scitepress, Setúbal (2020)
Lorenz, R., Hofacker, I.L., Stadler, P.F.: RNA folding with hard and soft constraints. Algorithms Mol. Biol. 11, 8 (2016). https://doi.org/10.1186/s13015-016-0070-z
McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990). https://doi.org/10.1002/bip.360290621
Mneimneh, S., Ahmed, S.A.: Multiple RNA interaction: beyond two. IEEE Trans. Nanobiosci. 14, 210–219 (2015). https://doi.org/10.1109/TNB.2015.2402591
Mückstein, U., et al.: Translational control by RNA-RNA interaction: improved computation of RNA-RNA binding thermodynamics. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds.) BIRD 2008. CCIS, vol. 13, pp. 114–127. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70600-7_9
Reidys, C.M.: Combinatorial Computational Biology of RNA. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-387-76731-4
Schaeffer, J.M., Thachuk, C., Winfree, E.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 194–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_13
Serra, M.J., Turner, D.H.: Predicting thermodynamic properties of RNA. Methods Enzymol. 259, 242–261 (1995). https://doi.org/10.1016/0076-6879(95)59047-1
Shear, D.B.: Stability and uniqueness of the equilibrium point in chemical reaction systems. J. Chem. Phys. 48, 4144–4147 (1968). https://doi.org/10.1063/1.1669753
Höner zu Siederdissen, C., Prohaska, S.J., Stadler, P.F.: Algebraic dynamic programming over general data structures. BMC Bioinform. 16(19), S2 (2015). https://doi.org/10.1186/1471-2105-16-S19-S2
Tacker, M., Stadler, P.F., Bornberg-Bauer, E.G., Hofacker, I.L., Schuster, P.: Algorithm independent properties of RNA structure prediction. Eur. Biophys. J. 25, 115–130 (1996). https://doi.org/10.1007/s002490050023
Tafer, H., Kehr, S., Hertel, J., Stadler, P.F.: RNAsnoop: efficient target prediction for box H/ACA snoRNAs. Bioinformatics 26, 610–616 (2010). https://doi.org/10.1093/bioinformatics/btp680
Backofen, R., et al.: RNAs everywhere: genome-wide annotation of structured RNAs. J. Exp. Zool. B: Mol. Dev. Evol. 308(B), 1–25 (2007). https://doi.org/10.1002/jez.b.21130. The Athanasius F. Bompfünewerer RNA Consortium
Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2010). https://doi.org/10.1093/nar/gkp892
Wang, F., Lu, C.H., Willner, I.: From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014). https://doi.org/10.1021/cr400354z
Will, C.L., Lührmann, R.: Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011). https://doi.org/10.1101/cshperspect.a003707
Wuchty, S., Fontana, W., Hofacker, I.L., Schuster, P.: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165 (1999). https://doi.org/10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
Zadeh, J.N., et al.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011). https://doi.org/10.1002/jcc.21596
Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981). https://doi.org/10.1093/nar/9.1.133
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
1.1 Gradient and Hessian of h
Efficient optimization of h, Eq. (21), required the gradient and the Hessian of h, which we give here for convenience:
We note that the Hessian is negative definite since the sum can be written as \(-\mathbf {M} \mathbf {M}^+\) with \(\mathbf {M}_{\alpha ,\kappa }= \mathbf {A}_{\alpha ,\kappa }\sqrt{K_{\kappa }} \exp \left( \frac{1}{2}\sum _{\alpha '} L_{\alpha '} \mathbf {A}_{\alpha ',\kappa }\right) \).
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lorenz, R., Flamm, C., Hofacker, I.L., Stadler, P.F. (2021). Efficient Algorithms for Co-folding of Multiple RNAs. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-72379-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72378-1
Online ISBN: 978-3-030-72379-8
eBook Packages: Computer ScienceComputer Science (R0)