A Knowledge Representation Model for Studying Knowledge Creation, Usage, and Evolution | SpringerLink
Skip to main content

A Knowledge Representation Model for Studying Knowledge Creation, Usage, and Evolution

  • Conference paper
  • First Online:
Diversity, Divergence, Dialogue (iConference 2021)

Abstract

A knowledge representation model is proposed to facilitate studies on knowledge creation, usage, and evolution. The model uses a three-layer network structure to capture citation relationships among papers, the internal concept structure within individual papers, and the knowledge landscape in a domain. The resulting model can not only reveal the path and direction of knowledge diffusion, but also detail the content of knowledge transferred between papers, new knowledge added, and changing knowledge landscape in a domain. A pilot experiment is carried out using the PMC-OA dataset in the biomedical field. A case study on one knowledge evolution chain of Alzheimer’s Disease demonstrates the use of the model in revealing knowledge creation, usage, and evolution. Initial findings confirm the feasibility of the model for its purpose. Limitations of the study are discussed. Future work will try to address the recognized limitations and apply the model to large scale automated analysis to understand the knowledge production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Landhuis, E.: Scientific literature: information overload. Nature 535(7612), 457–458 (2016)

    Article  Google Scholar 

  2. de Solla Price, D.J.: Networks of Scientific Papers. Science 149(3683), 510–515 (1965)

    Google Scholar 

  3. Garfield, E., Pudovkin, A.I., Istomin, V.S.: Why do we need algorithmic historiography? J. Am. Soc. Inf. Sci. Technol. 54(5), 400–412 (2003)

    Article  Google Scholar 

  4. van Eck, N.J., Waltman, L.: CitNetExplorer: a new software tool for analyzing and visualizing citation networks. J. Informetr. 8(4), 802–823 (2014)

    Article  Google Scholar 

  5. Kuhn, T., Perc, M., Helbing, D.: Inheritance patterns in citation networks reveal scientific memes. Phys. Rev. X 4(4), 41036 (2014)

    Google Scholar 

  6. Liang, Z., Mao, J., Cao, Y., Li, G.: Idea diffusion patterns: SNA on knowledge meme cascade network. In: Proceedings of ISSI 2019, Rome, Italy, pp. 2612–2613 (2019)

    Google Scholar 

  7. Mao, J., Liang, Z., Cao, Y., Li, G.: Quantifying cross-disciplinary knowledge flow from the perspective of content: introducing an approach based on knowledge memes. J. Informetr. 14(4), 101092 (2020)

    Article  Google Scholar 

  8. Bates, M.J.: Defining the information disciplines in encyclopedia development. Inf. Res. 12(4), 29 (2007)

    Google Scholar 

  9. Weller, K.: Knowledge Representation in the Social Semantic Web. Walter de Gruyter, Germany (2010)

    Book  Google Scholar 

  10. Hjørland, B.: Knowledge organization (KO). KO Knowl. Organ. 43(6), 475–484 (2016)

    Article  Google Scholar 

  11. Weller, K.: Folksonomies and ontologies: two new players in indexing and knowledge representation. In: Proceedings of the Online Information Conference, London, Great Britain, pp. 108–115 (2007)

    Google Scholar 

  12. Leydesdorff, L., Rafols, I.: A global map of science based on the ISI subject categories. J. Am. Soc. Inf. Sci. Technol. 60(2), 348–362 (2009)

    Article  Google Scholar 

  13. Callon, M., Courtial, J.-P., Turner, W.A., Bauin, S.: From translations to problematic networks: an introduction to co-word analysis. Soc. Sci. Inf. 22(2), 191–235 (1983)

    Article  Google Scholar 

  14. Lu, K., Wolfram, D.: Measuring author research relatedness: a comparison of word-based, topic-based, and author cocitation approaches. J. Am. Soc. Inf. Sci. Technol. 63(10), 1973–1986 (2012)

    Article  Google Scholar 

  15. White, H.D., McCain, K.W.: Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J. Am. Soc. Inf. Sci. 49(4), 327–355 (1998)

    Google Scholar 

  16. Kessler, M.M.: Bibliographic coupling between scientific papers. Am. Doc. 14(1), 10–25 (1963)

    Article  Google Scholar 

  17. Perianes-Rodríguez, A., Olmeda-Gómez, C., Moya-Anegón, F.: Detecting, identifying and visualizing research groups in co-authorship networks. Scientometrics 82(2), 307–319 (2010)

    Article  Google Scholar 

  18. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetr. 5(1), 146–166 (2011)

    Article  Google Scholar 

  19. Markman, A.B.: Knowledge Representation. Psychology Press, Mahwah (1999)

    Google Scholar 

  20. van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  21. Cronin, B.: The Citation Process: The Role and Significance of Citations in Scientific Communication. Taylor Graham, London (1984)

    Google Scholar 

  22. Lutz, B., Hans-Dieter, D.: What do citation counts measure? A review of studies on citing behavior. J. Doc. 64(1), 45–80 (2008)

    Article  Google Scholar 

  23. White, H.D.: Reward, persuasion, and the Sokal Hoax: a study in citation identities. Scientometrics 60(1), 93–120 (2004)

    Article  Google Scholar 

  24. Frandsen, T.F., Nicolaisen, J.: Citation behavior: a large-scale test of the persuasion by name-dropping hypothesis. J. Assoc. Inf. Sci. Technol. 68(5), 1278–1284 (2017)

    Article  Google Scholar 

  25. Sugimoto, C.R.: Theories of Informetrics and Scholarly Communication. Walter de Gruyter, Germany (2016)

    Book  Google Scholar 

  26. Garfield, E., Sher, I.H., Torpie, R.J.: The use of citation data in writing the history of science. Institute for Scientific Information, Philadelphia (1964)

    Book  Google Scholar 

  27. Hummon, N.P., Dereian, P.: Connectivity in a citation network: the development of DNA theory. Soc. Network. 11(1), 39–63 (1989)

    Article  Google Scholar 

  28. Lucio-Arias, D., Leydesdorff, L.: Main-path analysis and path-dependent transitions in HistCiteTM-based historiograms. J. Am. Soc. Inf. Sci. Technol. 59(12), 1948–1962 (2008)

    Article  Google Scholar 

  29. Liu, J.S., Lu, L.Y.Y., Ho, M.H.-C.: A few notes on main path analysis. Scientometrics 119(1), 379–391 (2019)

    Article  Google Scholar 

  30. Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., Zhai, C.: Content-based citation analysis: the next generation of citation analysis. J. Assoc. Inf. Sci. Technol. 65(9), 1820–1833 (2014)

    Article  Google Scholar 

  31. Chen, C., Li, Q., Chiu, K., Deng, Z.: The impact of Chinese library and information science on outside disciplines: a citation analysis. J. Librariansh. Inf. Sci. 52(2), 493–508 (2019)

    Article  Google Scholar 

  32. Wang, F., et al.: Exploring all-author tripartite citation networks: a case study of gene editing. J. Informetr. 13(3), 856–873 (2019)

    Article  Google Scholar 

  33. Walter, C., Ribière, V.: A citation and co-citation analysis of 10 years of KM theory and practices. Knowl. Manag. Res. Pract. 11(3), 221–229 (2013)

    Article  Google Scholar 

  34. Shiau, W.-L., Dwivedi, Y.K.: Citation and co-citation analysis to identify core and emerging knowledge in electronic commerce research. Scientometrics 94(3), 1317–1337 (2013)

    Article  Google Scholar 

  35. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  36. Scott, J., Carrington, P.J.: The SAGE Handbook of Social Network Analysis. SAGE, Thousand Oaks (2011)

    Google Scholar 

  37. Criado, R., Romance, M., Vela-Pérez, M.: Hyperstructures, a new approach to complex systems. Int. J. Bifurc. Chaos. 20(03), 877–883 (2010)

    Article  MathSciNet  Google Scholar 

  38. Kim, H.J., Jeong, Y.K., Song, M.: Content- and proximity-based author co-citation analysis using citation sentences. J. Informetr. 10(4), 954–966 (2016)

    Article  Google Scholar 

  39. Colavizza, G., Boyack, K.W., van Eck, N.J., Waltman, L.: The closer the better: similarity of publication pairs at different cocitation levels. J. Assoc. Inf. Sci. Technol. 69(4), 600–609 (2018)

    Article  Google Scholar 

  40. Wei, C.-H., Allot, A., Leaman, R., Lu, Z.: PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47(W1), W587–W593 (2019)

    Article  Google Scholar 

  41. Fortunato, S., et al.: Science of science. Science 359(6379), eaao0185 (2018)

    Article  Google Scholar 

  42. Xu, J., et al.: Building a PubMed knowledge graph. Sci. Data. 7, 1–19 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the National Natural Science Foundation of China (NSFC) Grant Nos. 71804135 and 71921002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Liu, F., Mao, J., Lu, K. (2021). A Knowledge Representation Model for Studying Knowledge Creation, Usage, and Evolution. In: Toeppe, K., Yan, H., Chu, S.K.W. (eds) Diversity, Divergence, Dialogue. iConference 2021. Lecture Notes in Computer Science(), vol 12645. Springer, Cham. https://doi.org/10.1007/978-3-030-71292-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71292-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71291-4

  • Online ISBN: 978-3-030-71292-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics