Towards Developing a Hospital Cabin Management System Using Brain Computer Interaction | SpringerLink
Skip to main content

Towards Developing a Hospital Cabin Management System Using Brain Computer Interaction

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2020)

Abstract

The aim of this article is to propose a conceptual framework for a system, using which a severely ill or disabled patient admitted in a hospital cabin can exert some control on the surrounding environment using only his/her thoughts. A brain computer interface (BCI) headset can be used to collect Electroencephalographic (EEG) data from the brain and an artificial neural network can be used to process the EEG data and predict what the patient is thinking. The proposed system will provide immense benefits to the patients admitted in hospital cabins, especially in developing countries, where the doctor to patient and nurse to patient ratio is really low and a patient admitted in a hospital cabin is usually left unattended for a long period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiri, R., Borhani, S., Kilmarx, J., Esterwood, C., Jiang, Y., Zhao, X.: A usability study of low-cost wireless brain-computer interface for cursor control using online linear model. IEEE Trans. Hum.-Mach. Syst. 50(4), 287–297 (2020)

    Article  Google Scholar 

  2. Akter, N., Akter, M., Turale, S.: Barriers to quality of work life among Bangladeshi nurses: a qualitative study. Int. Nurs. Rev. 66(3), 396–403 (2019)

    Article  Google Scholar 

  3. Banik, B.C., Ghosh, M., Das, A., Banerjee, D., Paul, S., Neogi, B.: Design of mind-controlled vehicle (mcv) & study of EEG signal for three mental states. In: 2017 Devices for Integrated Circuit (DevIC), pp. 808–812. IEEE (2017)

    Google Scholar 

  4. Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Müller, K.R.: A note on brain actuated spelling with the berlin brain-computer interface. In: International Conference on Universal Access in Human-Computer Interaction, pp. 759–768. Springer, Heidelberg (2007)

    Google Scholar 

  5. Darkwa, E.K., Newman, M.S., Kawkab, M., Chowdhury, M.E.: A qualitative study of factors influencing retention of doctors and nurses at rural healthcare facilities in Bangladesh. BMC Health Serv. Res. 15(1), 1–12 (2015)

    Article  Google Scholar 

  6. Dipta, S.S., Ghosh, A., Kundu, A., Saha, A.: 2-d motion based real time wireless interaction system for disabled patients. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 331–334. IEEE (2019)

    Google Scholar 

  7. Diva, S.Z., Prorna, R.A., Rahman, I.I., Islam, A.B., Islam, M.N.: Applying brain-computer interface technology for evaluation of user experience in playing games. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Dornhege, G., Millán, J.D.R., Hinterberger, T., McFarland, D., Müller, K.R., et al.: Toward Brain-Computer Interfacing, vol. 63. MIT press, Cambridge (2007)

    Book  Google Scholar 

  9. Goel, M.K.: An overview of brain computer interface. In: 2015 Recent and Emerging trends in Computer and Computational Sciences (RETCOMP), pp. 10–17. IEEE (2015)

    Google Scholar 

  10. Inan, T.T., Samia, M.B.R., Tulin, I.T., Islam, M.N.: A decision support model to predict icu readmission through data mining approach. In: 22nd Pacific Asia Conference on Information Systems (PACIS 2018) (2018)

    Google Scholar 

  11. Islam, M.N., Islam, A.N.: A systematic review of the digital interventions for fighting covid-19: the Bangladesh perspective. IEEE Access 8, 114078–114087 (2020)

    Article  Google Scholar 

  12. Islam, M.N., Islam, I., Munim, K.M., Islam, A.N.: A review on the mobile applications developed for covid-19: an exploratory analysis. IEEE Access 8, 145601–145610 (2020)

    Article  Google Scholar 

  13. Islam, M.N., Karim, M.M., Inan, T.T., Islam, A.N.: Investigating usability of mobile health applications in Bangladesh. BMC Med. Inf. Decis. Making 20, 19 (2020)

    Article  Google Scholar 

  14. Jang, W.A., Lee, S.M., Lee, D.H.: Development bci for individuals with severely disability using emotiv eeg headset and robot. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI). pp. 1–3. IEEE (2014)

    Google Scholar 

  15. Lamb, K., Madhe, S.: Hand gesture recognition based bed position control for disabled patients. In: 2016 Conference on Advances in Signal Processing (CASP), pp. 170–174. IEEE (2016)

    Google Scholar 

  16. Lee, W.T., Nisar, H., Malik, A.S., Yeap, K.H.: A brain computer interface for smart home control. In: 2013 IEEE International Symposium on Consumer Electronics (ISCE), pp. 35–36. IEEE (2013)

    Google Scholar 

  17. Liao, C.Y., Chen, R.C., Tai, S.K.: Emotion stress detection using EEG signal and deep learning technologies. In: 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 90–93. IEEE (2018)

    Google Scholar 

  18. Lo, C.C., Chien, T.Y., Pan, J.S., Lin, B.S.: Novel non-contact control system for medical healthcare of disabled patients. IEEE Access 4, 5687–5694 (2016)

    Article  Google Scholar 

  19. Mahmud, S.: Health workforce in Bangladesh (2013). https://opinion.bdnews24.com/2013/03/24/health-workforce-in-bangladesh/

  20. McGarry, B.E., Grabowski, D.C., Barnett, M.L.: Severe staffing and personal protective equipment shortages faced by nursing homes during the covid-19 pandemic: study examines staffing and personal protective equipment shortages faced by nursing homes during the covid-19 pandemic. Health Aff. 39(10), 1812–1821 (2020)

    Article  Google Scholar 

  21. Panoulas, K.J., Hadjileontiadis, L.J., Panas, S.M.: Brain-computer interface (bci): types, processing perspectives and applications. In: Multimedia Services in Intelligent Environments, pp. 299–321. Springer, Heidelberg (2010)

    Google Scholar 

  22. Prashant, P., Joshi, A., Gandhi, V.: Brain computer interface: a review. In: 2015 5th Nirma University International Conference on Engineering (NUiCONE), pp. 1–6. IEEE (2015)

    Google Scholar 

  23. Ratchatorn, T., Pumrin, S.: Patient aid message notification system based on hand movement tracking and haar-like features. In: 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 624–627. IEEE (2018)

    Google Scholar 

  24. Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M.H., Burdet, E.: A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 590–598 (2010)

    Article  Google Scholar 

  25. Reinhold, K., Tint, P., Traumann, A., Tamme, P., Tuulik, V., Voolma, S.R.: Digital support in logistics of home-care nurses for disabled and elderly people. In: International Conference on Human Interaction and Emerging Technologies, pp. 563–568. Springer, Heidelberg (2019)

    Google Scholar 

  26. Shantala, C., Rashmi, C.: Mind controlled wireless robotic arm using brain computer interface. In: 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–8. IEEE (2017)

    Google Scholar 

  27. Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. In: Mayo Clinic Proceedings, vol. 87, pp. 268–279. Elsevier (2012)

    Google Scholar 

  28. Soman, S., Murthy, B.: Using brain computer interface for synthesized speech communication for the physically disabled. Procedia Comput. Sci. 46, 292–298 (2015)

    Article  Google Scholar 

  29. St, L., Wold, S., et al.: Analysis of variance (anova). Chemometr. Intell. Lab. Syst. 6(4), 259–272 (1989)

    Article  Google Scholar 

  30. Sterpetti, A.V.: Lessons learned during the covid-19 virus pandemic. J. Am. Coll. Surg. 230(6), 1092–1093 (2020)

    Article  Google Scholar 

  31. Sudarsanan, K., Sasipriya, S.: Controlling a robot using brain waves. In: 2014 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4. IEEE (2014)

    Google Scholar 

  32. Sultana, M., Hossain, A., Laila, F., Taher, K.A., Islam, M.N.: Towards developing a secure medical image sharing system based on zero trust principles and blockchain technology. BMC Med. Inf. Decis. Mak. 20(1), 1–10 (2020)

    Article  Google Scholar 

  33. Swaminathan, R., Prasad, S.: Brain computer interface used in health care technologies. In: Next Generation DNA Led Technologies, pp. 49–58. Springer, Heidelberg (2016)

    Google Scholar 

  34. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol 113(6), 767–791 (2002)

    Article  Google Scholar 

  35. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 137–140 (2003)

    Google Scholar 

  36. Yeom, H.G.: Trends and future of brain-computer interfaces. In: 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), pp. 785–788. IEEE (2018)

    Google Scholar 

  37. Yordanov, Y., Tsenov, G., Mladenov, V.: Humanoid robot control with eeg brainwaves. In: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 1, pp. 238–242. IEEE (2017)

    Google Scholar 

  38. Zhu, W., Zeng, N., Wang, N., et al.: Sensitivity, specificity, accuracy, associated confidence interval and roc analysis with practical SAS implementations. In: NESUG Proceedings: Health Care and Life Sciences, Baltimore, Maryland, vol. 19, p. 67 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aadeeb, M.S., Munna, M.M.H., Rahman, M.R., Islam, M.N. (2021). Towards Developing a Hospital Cabin Management System Using Brain Computer Interaction. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_20

Download citation

Publish with us

Policies and ethics