Composing Pick-and-Place Tasks by Grounding Language | SpringerLink
Skip to main content

Composing Pick-and-Place Tasks by Grounding Language

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 19))

Included in the following conference series:

Abstract

Controlling robots to perform tasks via natural language is one of the most challenging topics in human-robot interaction. In this work, we present a robot system that follows unconstrained language instructions to pick and place arbitrary objects and effectively resolves ambiguities through dialogues. Our approach infers objects and their relationships from input images and language expressions and can place objects in accordance with the spatial relations expressed by the user. Unlike previous approaches, we consider grounding not only for the picking but also for the placement of everyday objects from language. Specifically, by grounding objects and their spatial relations, we allow specification of complex placement instructions, e.g. “place it behind the middle red bowl”. Our results obtained using a real-world PR2 robot demonstrate the effectiveness of our method in understanding pick-and-place language instructions and sequentially composing them to solve tabletop manipulation tasks. Videos are available at http://speechrobot.cs.uni-freiburg.de.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Further quantitative experiments were infeasible at time of submission due to COVID-19.

References

  1. Clark, H.H., Brennan, S.E.: Grounding in communication. Prespectives on Socially Shared Cognition (1991)

    Google Scholar 

  2. Guadarrama, S., Riano, L., Golland, D., Go, D., Jia, Y., Klein, D., Abbeel, P., Darrell, T.: Grounding spatial relations for human-robot interaction. In: IROS (2013)

    Google Scholar 

  3. Pangercic, D., Pitzer, B., Tenorth, M., Beetz, M.: Semantic object maps for robotic housework-representation, acquisition and use. In: IROS (2012)

    Google Scholar 

  4. Hatori, J., Kikuchi, Y., Kobayashi, S., Takahashi, K., Tsuboi, Y., Unno, Y., Ko, W., Tan, J.: Interactively picking real-world objects with unconstrained spoken language instructions. In: ICRA (2018)

    Google Scholar 

  5. Paul, R., Arkin, J., Roy, N., M Howard, T.: Efficient grounding of abstract spatial concepts for natural language interaction with robot manipulators. In: RSS (2016)

    Google Scholar 

  6. Jiang, Y., Lim, M., Zheng, C., Saxena, S.: Learning to place new objects in a scene. IJRR 31(9), 1021–1043 (2012)

    Google Scholar 

  7. Mees, O., Emek, A., Vertens, J., Burgard, W.: Learning object placements for relational instructions by hallucinating scene representations. In: ICRA (2020)

    Google Scholar 

  8. Mees, O., Abdo, N., Mazuran, M., Burgard, W.: Metric learning for generalizing spatial relations to new objects. In: IROS (2017)

    Google Scholar 

  9. Shridhar, M., Hsu, D.: Interactive visual grounding of referring expressions for human-robot interaction. In: RSS (2018)

    Google Scholar 

  10. Misra, D.K., Sung, J., Lee, K., Saxena, A.: Tell me dave: context-sensitive grounding of natural language to manipulation instructions. IJRR 35(1-3), 281–300 (2016)

    Google Scholar 

  11. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referring to objects in photographs of natural scenes. In: EMNLP, Referitgame (2014)

    Google Scholar 

  12. Antol, S., Agrawal, A., Jiasen, L., Mitchell, M., Batra, D., Zitnick, C.L., Parikh, D.: Visual question answering. In: ICCV, Vqa (2015)

    Google Scholar 

  13. Johnson, J., Karpathy, A., Fei-Fei, L.: Fully convolutional localization networks for dense captioning. In: CVPR, Densecap (2016)

    Google Scholar 

  14. Anderson, P., Qi, W., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid, I., Gould, S., van den Hengel, A.: Interpreting visually-grounded navigation instructions in real environments. In: CVPR, Vision-and-language navigation (2018)

    Google Scholar 

  15. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)

    Google Scholar 

  16. Licheng, Y., Lin, Z., Shen, X., Yang, J., Xin, L., Bansal, M., Berg, T.L.: Modular attention network for referring expression comprehension. In: CVPR, Mattnet (2018)

    Google Scholar 

  17. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)

    Google Scholar 

  18. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In: CVPR (2016)

    Google Scholar 

  19. Gualtieri, M., Ten Pas, A., Saenko, K., Platt, R.: High precision grasp pose detection in dense clutter. In: IROS (2016)

    Google Scholar 

  20. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: CVPR (2017)

    Google Scholar 

  21. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)

    Google Scholar 

  22. Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: CVPR (2017)

    Google Scholar 

  23. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Google Scholar 

  24. Mees, O., Merklinger, M., Kalweit, G., Burgard, W.: Unsupervised robot skill learning from videos. In: ICRA, Adversarial skill networks (2020)

    Google Scholar 

  25. Abdo, N., Stachniss, C., Spinello, L., Burgard, W.: Organizing objects by predicting user preferences through collaborative filtering. IJRR 35(13), 1587–1608 (2016)

    Google Scholar 

  26. Haustein, J.A., Hang, K., Stork, J.A., Kragic, D.: Object placement planning and optimization for robot manipulators. In: IROS (2019)

    Google Scholar 

  27. Nematollahi, I., Mees, O., Hermann, L., Burgard, W.: Unsupervised structured dynamics models from physical interaction. In: IROS, Hindsight for foresight (2020)

    Google Scholar 

  28. Mees, O., Tatarchenko, M., Brox, T., Burgard, W.: Self-supervised 3d shape and viewpoint estimation from single images for robotics. In: IROS (2019)

    Google Scholar 

  29. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.: Shape completion enabled robotic grasping. In: IROS (2017)

    Google Scholar 

  30. Mousavian, A., Eppner, C., Fox, D.: 6-dof graspnet: variational grasp generation for object manipulation. In: ICCV (2019)

    Google Scholar 

  31. Lynch, C., Sermanet, P.: Grounding language in play. arXiv preprint arXiv:2005.07648 (2020)

  32. Shao, L., Migimatsu, T., Zhang, Q., Yang, K., Bohg, J.: Concept2robot: learning manipulation concepts from instructions and human demonstrations. In: RSS (2020)

    Google Scholar 

Download references

Acknowledgments

This work has been supported partly by the Freiburg Graduate School of Robotics and the German Federal Ministry of Education and Research under contract number 01IS18040B-OML. We thank Henrich Kolkhorst for his contributions to the speech-to-text pipeline and to Andreas Eitel for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oier Mees .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mees, O., Burgard, W. (2021). Composing Pick-and-Place Tasks by Grounding Language. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_43

Download citation

Publish with us

Policies and ethics