Stabilizing the Predictive Performance for Ear Emergence in Rice Crops Across Cropping Regions | SpringerLink
Skip to main content

Stabilizing the Predictive Performance for Ear Emergence in Rice Crops Across Cropping Regions

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12280))

Included in the following conference series:

Abstract

Several studies have demonstrated a good predictive performance of ear emergence in rice crops. However, significant regional variations in performance have been discovered and they remain unsolved. In this study, we aim to realize a stable predictive performance for ear emergence in rice crops regardless of its regional variations. Although a variety of data that represents regional characteristics have been adopted as the variables for prediction in related work, stability of the predictive performance has not been attained. These results imply that explicit regional data is insufficient for stabilizing the regional variances of the prediction. This study proposes to use engineered variables that uncover hidden regional characteristics behind the explicit regional data. Pre-examinations of the regional data indicate distinctive patterns of time dependency according to each region. Based on the findings, hidden Markov models are applied to the micro climate data to create engineered variables that represent the implicit time dependent regional characteristics. The efficiency of these variables is empirically studied, and the results show a significant improvement in the regional predictive variance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://amu.rd.naro.go.jp/.

References

  1. Uehara, H., Shinjo, A.: WAGRI - the agricultural big data platform. In: ProceedingE-AGRICULTURE IN ACTION:BIG DATA FOR AGRICULTURE Food and Agriculture Organization of the United Nations and the International Telecommunication Union, pp. 73–83 (2019)

    Google Scholar 

  2. Streck, N.A., Albert, W., Xue, Q., Stephen, P.B.: Improving predictions of developmental stages in winter wheat: a modified Wang and Engel model. Agric. Forest Meteorol. 115(3–4), 139–150 (2003)

    Article  Google Scholar 

  3. Bogard, M., Ravel, C., Paux, E., Bordes, J.: Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20), 5849–5865 (2014)

    Article  Google Scholar 

  4. Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H.: Random forests for global and regional crop yield predictions. PLoS ONE 11(6), e0156571 (2016)

    Article  Google Scholar 

  5. Ying-xue, S., Huan, X., Li-jiao, Y.: Support vector machine-based open crop model (SBOCM): case of rice production in China. Saudi J. Biol. Sci. 24(3), 537–547 (2017)

    Article  Google Scholar 

  6. Chauhan, Y.S., Ryan, M., Chandra, S., Sadras, V.O.: Accounting for soil moisture improves prediction of flowering time in chickpea and wheat. Nature.com, vol. 7510, no.Scientific Reports, pp. 1–11 (2019)

    Google Scholar 

  7. Bogard, M., et al.: Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20), 5849–5865 (2014)

    Article  Google Scholar 

  8. Maeda, Y., Goyodani, T., Nishiuchi, S., Kita, E.: Yield prediction of paddy rice with machine learning. In: Proceeding The 24th Int’l Conf on Parallel and Distributed Processing Techniques and Applications, pp. 361–365 (2018)

    Google Scholar 

  9. Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57–65 (2016)

    Article  Google Scholar 

  10. Horie, T., Nakagawa, H.: Modelling and prediction of developmental process in rice: I. structure and method of parameter estimation of a model for simulating developmental process toward heading. Crop Sci. Soc. Japan 59(4), 687–695 (1990)

    Article  Google Scholar 

  11. Maeda, Y., Goyodani, T., Nishiuchi, S., Kita, E.: Yield prediction of paddy rice with machine learning. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp. 361–365 (2018)

    Google Scholar 

  12. Wang, Q., Shwartz, L., Grabarnik, G.Y., Nidd, M., Hwang, J.: Leveraging AI in service automation modeling: from classical AI through deep learning to combination models. In: Proceeding of Int’l Conf on Service-Oriented Computing, vol. 2019, pp. 186–201 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Iuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iuchi, Y., Uehara, H., Fukazawa, Y., Kaneta, Y. (2021). Stabilizing the Predictive Performance for Ear Emergence in Rice Crops Across Cropping Regions. In: Uehara, H., Yamaguchi, T., Bai, Q. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2021. Lecture Notes in Computer Science(), vol 12280. Springer, Cham. https://doi.org/10.1007/978-3-030-69886-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69886-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69885-0

  • Online ISBN: 978-3-030-69886-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics