Collaborative Data Analysis: Non-model Sharing-Type Machine Learning for Distributed Data | SpringerLink
Skip to main content

Collaborative Data Analysis: Non-model Sharing-Type Machine Learning for Distributed Data

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2021)

Abstract

This paper proposes a novel non-model sharing-type collaborative learning method for distributed data analysis, in which data are partitioned in both samples and features. Analyzing these types of distributed data are essential tasks in many applications, e.g., medical data analysis and manufacturing data analysis due to privacy and confidentiality concerns. By centralizing the intermediate representations which are individually constructed in each party, the proposed method achieves collaborative analysis without revealing the individual data, while the learning models remain distributed over local parties. Numerical experiments indicate that the proposed method achieves higher recognition performance for artificial and real-world problems than individual analysis.

The present study is supported in part by JST/ACT-I (No. JPMJPR16U6), NEDO and JSPS/Grants-in-Aid for Scientific Research (Nos. 17K12690, 18H03250, 19KK0255).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://featureselection.asu.edu/datasets.php.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Bogdanova, A., Nakai, A., Okada, Y., Imakura, A., Sakurai, T.: Federated learning system without model sharing through integration of dimensional reduced data representations. In: International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with IJCAI 2020 (FL-IJCAI 2020) (2020, accepted)

    Google Scholar 

  4. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  5. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using multiparty computation. Nat. Biotechnol. 36(6), 547 (2018)

    Article  Google Scholar 

  6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179–188 (1936)

    Google Scholar 

  8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Stoc, vol. 9, pp. 169–178 (2009)

    Google Scholar 

  9. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

    Google Scholar 

  10. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153–160 (2004)

    Google Scholar 

  11. Imakura, A., Matsuda, M., Ye, X., Sakurai, T.: Complex moment-based supervised eigenmap for dimensionality reduction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3910–3918 (2019)

    Google Scholar 

  12. Imakura, A., Sakurai, T.: Data collaboration analysis for distributed datasets. arXiv preprint arXiv:1902.07535 (2019)

  13. Imakura, A., Sakurai, T.: Data collaboration analysis framework using centralization of individual intermediate representations for distributed data sets. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng. 6, 04020018 (2020)

    Article  Google Scholar 

  14. Ito, S., Murota, K.: An algorithm for the generalized eigenvalue problem for nonsquare matrix pencils by minimal perturbation approach. SIAM J. Matrix. Anal. Appl. 37, 409–419 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_23

    Chapter  Google Scholar 

  16. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review. arXiv preprint arXiv:1412.7584 (2014)

  17. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtarik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)

  18. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning (2016). https://arxiv.org/abs/1610.05492

  19. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  20. Li, X., Chen, M., Nie, F., Wang, Q.: Locality adaptive discriminant analysis. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2201–2207. AAAI Press (2017)

    Google Scholar 

  21. van der Maaten, L., Hinton, G., Visualizing data using t-SNE: J. Machine Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  22. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)

  23. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  24. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceeding of IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  25. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables (1998)

    Google Scholar 

  26. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8(May), 1027–1061 (2007)

    MATH  Google Scholar 

  28. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soci. (Series B) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Yang, Q.: GDPR, data shortage and AI (2019). https://aaai.org/Conferences/AAAI-19/invited-speakers/. Invited Talk of The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

  30. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), Article 12 (2019)

    Google Scholar 

  31. Ye, X., Li, H., Imakura, A., Sakurai, T.: Distributed collaborative feature selection based on intermediate representation. In: The 28th International Joint Conference on Artificial Intelligence (IJCAI-19). pp. 4142–4149 (2019)

    Google Scholar 

  32. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:cs.LG/1806.00582 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Imakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imakura, A., Ye, X., Sakurai, T. (2021). Collaborative Data Analysis: Non-model Sharing-Type Machine Learning for Distributed Data. In: Uehara, H., Yamaguchi, T., Bai, Q. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2021. Lecture Notes in Computer Science(), vol 12280. Springer, Cham. https://doi.org/10.1007/978-3-030-69886-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69886-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69885-0

  • Online ISBN: 978-3-030-69886-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics