Abstract
In this paper, we propose a deep snapshot high dynamic range (HDR) imaging framework that can effectively reconstruct an HDR image from the RAW data captured using a multi-exposure color filter array (ME-CFA), which consists of a mosaic pattern of RGB filters with different exposure levels. To effectively learn the HDR image reconstruction network, we introduce the idea of luminance normalization that simultaneously enables effective loss computation and input data normalization by considering relative local contrasts in the “normalized-by-luminance” HDR domain. This idea makes it possible to equally handle the errors in both bright and dark areas regardless of absolute luminance levels, which significantly improves the visual image quality in a tone-mapped domain. Experimental results using two public HDR image datasets demonstrate that our framework outperforms other snapshot methods and produces high-quality HDR images with fewer visual artifacts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of SIGGRAPH, pp. 1–10 (1997)
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(144), 1–12 (2017)
Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_8
Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1751–1760 (2019)
Marnerides, D., Bashford-Rogers, T., Hatchett, J., Debattista, K.: ExpandNet: a deep convolutional neural network for high dynamic range expansion from low dynamic range content. Comput. Graph. Forum 37, 37–49 (2018)
Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. 36(178), 1–15 (2017)
Lee, S., An, G.H., Kang, S.J.: Deep chain HDRI: reconstructing a high dynamic range image from a single low dynamic range image. IEEE Access 6, 49913–49924 (2018)
Cho, H., Kim, S.J., Lee, S.: Single-shot high dynamic range imaging using coded electronic shutter. Comput. Graph. Forum 33, 329–338 (2014)
Choi, I., Baek, S.H., Kim, M.H.: Reconstructing interlaced high-dynamic-range video using joint learning. IEEE Trans. Image Process. 26, 5353–5366 (2017)
Narasimhan, S.G., Nayar, S.K.: Enhancing resolution along multiple imaging dimensions using assorted pixels. IEEE Trans. Pattern Anal. Mach. Intell. 27, 518–530 (2005)
Nayar, S.K., Mitsunaga, T.: High dynamic range imaging: spatially varying pixel exposures. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2000)
Eilertsen, G., Mantiuk, R.K., Unger, J.: Real-time noise-aware tone mapping. ACM Trans. Graph. 34(198), 1–15 (2015)
Ma, K., Duanmu, Z., Yeganeh, H., Wang, Z.: Multi-exposure image fusion by optimizing a structural similarity index. IEEE Trans. Comput. Imaging 4, 60–72 (2017)
Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., Zhang, L.: Robust multi-exposure image fusion: a structural patch decomposition approach. IEEE Trans. Image Process. 26, 2519–2532 (2017)
Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28, 161–171 (2009)
Hu, J., Gallo, O., Pulli, K., Sun, X.: HDR deghosting: how to deal with saturation? In: Proceedings of IEEE Conferenc on Computer Vision and Pattern Recognition (CVPR), pp. 1163–1170 (2013)
Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31(203), 1–11 (2012)
Lee, C., Li, Y., Monga, V.: Ghost-free high dynamic range imaging via rank minimization. IEEE Signal Process. Lett. 21, 1045–1049 (2014)
Oh, T.H., Lee, J.Y., Tai, Y.W., Kweon, I.S.: Robust high dynamic range imaging by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1219–1232 (2014)
Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(192), 1–12 (2016)
Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating exposures. Comput. Graph. Forum 38, 193–205 (2019)
Prabhakar, K.R., Arora, R., Swaminathan, A., Singh, K.P., Babu, R.V.: A fast, scalable, and reliable deghosting method for extreme exposure fusion. In: Proceedings of IEEE Interntaional Conference on Computational Photography (ICCP), pp. 170–177 (2019)
Ram Prabhakar, K., Sai Srikar, V., Venkatesh Babu, R.: DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 4724–4732 (2017)
Yan, Q., et al.: Multi-scale dense networks for deep high dynamic range imaging. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 41–50 (2019)
Tursun, O.T., Akyüz, A.O., Erdem, A., Erdem, E.: The state of the art in HDR deghosting: a survey and evaluation. Comput. Graph. Forum 34, 683–707 (2015)
Ogino, Y., Tanaka, M., Shibata, T., Okutomi, M.: Super high dynamic range video. In: Proc. of International Conference on Pattern Recognition (ICPR), pp. 4208–4213 (2016)
Tocci, M.D., Kiser, C., Tocci, N., Sen, P.: A versatile HDR video production system. ACM Trans. Graph. 30(41), 1–9 (2011)
Yang, X., Xu, K., Song, Y., Zhang, Q., Wei, X., Lau, R.W.: Image correction via deep reciprocating HDR transformation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1798–1807 (2018)
Moriwaki, K., Yoshihashi, R., Kawakami, R., You, S., Naemura, T.: Hybrid loss for learning single-image-based HDR reconstruction. arXiv preprint 1812.07134 (2018)
Kim, S.Y., Kim, D.-E., Kim, M.: ITM-CNN: learning the inverse tone mapping from low dynamic range video to high dynamic range displays using convolutional neural networks. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 395–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_25
Endo, Y., Kanamori, Y., Mitani, J.: Deep reverse tone mapping. ACM Trans. Graph. 36(177), 1–10 (2017)
Lee, S., An, G.H., Kang, S.-J.: Deep recursive HDRI: inverse tone mapping using generative adversarial networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 613–628. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_37
Gu, J., Hitomi, Y., Mitsunaga, T., Nayar, S.: Coded rolling shutter photography: flexible space-time sampling. In: Proceedings of IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2010)
Uda, S., Sakaue, F., Sato, J.: Variable exposure time imaging for obtaining unblurred HDR images. IPSJ Trans. Comput. Vis. Appl. 8, 3:1–3:7 (2016)
Alghamdi, M., Fu, Q., Thabet, A., Heidrich, W.: Reconfigurable snapshot HDR imaging using coded masks and inception network. In: Proceedings of Vision, Modeling, and Visualization (VMV), pp. 1–9 (2019)
Nagahara, H., Sonoda, T., Liu, D., Gu, J.: Space-time-brightness sampling using an adaptive pixel-wise coded exposure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1834–1842 (2018)
Serrano, A., Heide, F., Gutierrez, D., Wetzstein, G., Masia, B.: Convolutional sparse coding for high dynamic range imaging. Comput. Graph. Forum 35, 153–163 (2016)
Go, C., Kinoshita, Y., Shiota, S., Kiua, H.: Image fusion for single-shot high dynamic range imaging with spatially varying exposures. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1082–1086 (2018)
Hajisharif, S., Kronander, J., Unger, J.: Adaptive dualISO HDR reconstruction. EURASIP J. Image Video Process. 2015, 1–13 (2015)
Heide, F., et al.: FlexISP: a flexible camera image processing framework. ACM Trans. Graph. 33(231), 1–13 (2014)
Aguerrebere, C., Almansa, A., Delon, J., Gousseau, Y., Musé, P.: A Bayesian hyperprior approach for joint image denoising and interpolation, with an application to HDR imaging. IEEE Trans. Comput. Imaging 3, 633–646 (2017)
Aguerrebere, C., Almansa, A., Gousseau, Y., Delon, J., Muse, P.: Single shot high dynamic range imaging using piecewise linear estimators. In: Proceedings of IEEE International Conference on Computational Photography (ICCP), pp. 1–10 (2014)
An, V.G., Lee, C.: Single-shot high dynamic range imaging via deep convolutional neural network. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1768–1772 (2017)
Rouf, M., Ward, R.K.: high dynamic range imaging with a single exposure-multiplexed image using smooth contour prior. In: Proceedings of IS&T International Symposium on Electronic Imaging (EI), vol. 440, pp. 1–6 (2018)
Cheng, C.H., Au, O.C., Cheung, N.M., Liu, C.H., Yip, K.Y.: High dynamic range image capturing by spatial varying exposed color filter array with specific demosaicking algorithm. In: Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 648–653 (2009)
Bayer, B.E.: Color imaging array, US patent 3,971,065 (1976)
Cui, K., Jin, Z., Steinbach, E.: Color image demosaicking using a 3-stage convolutional neural network structure. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 2177–2181 (2018)
Kokkinos, F., Lefkimmiatis, S.: Deep image demosaicking using a cascade of convolutional residual denoising networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 317–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_19
Grossberg, M.D., Nayar, S.K.: What is the space of camera response functions? In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2003)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Henz, B., Gastal, E.S., Oliveira, M.M.: Deep joint design of color filter arrays and demosaicing. Comput. Graphics Forum 37, 389–399 (2018)
Funt, B., Shi, L.: The rehabilitation of MaxRGB. In: Proceedings of Color and Imaging Conference (CIC), pp. 256–259 (2010)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint 1412.6980 (2014)
Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graphics 30(40), 1–13 (2011)
Monno, Y., Kiku, D., Tanaka, M., Okutomi, M.: Adaptive residual interpolation for color and multispectral image demosaicking. Sensors 17(2787), 1–21 (2017)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Fan, Y., Yu, J., Huang, T.S.: Wide-activated deep residual networks based restoration for BPG-compressed images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition workshops (CVPRW), pp. 2621–2624 (2018)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1132–1140 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 93647 KB)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Suda, T., Tanaka, M., Monno, Y., Okutomi, M. (2021). Deep Snapshot HDR Imaging Using Multi-exposure Color Filter Array. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-69532-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69531-6
Online ISBN: 978-3-030-69532-3
eBook Packages: Computer ScienceComputer Science (R0)