Modeling Carbon Dioxide Dispersion Indoors | SpringerLink
Skip to main content

Modeling Carbon Dioxide Dispersion Indoors

A Cell-DEVS Experiment

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Abstract

Carbon dioxide concentration in closed spaces is an indication of air quality and a means of measuring the number of occupants for controlling energy consumption. However, the dispersion of the gas and the accuracy of the concentration measurements as logged by carbon dioxide sensors are highly sensitive to the configuration of the closed space. Conducting case by case studies for each closed space is neither practical nor cost-effective. We hereby propose a formal model using cellular discrete-event system specifications for studying carbon dioxide dispersion indoors and for analyzing the effect of different configurations on the sensors measurements of the concentration. We present a case study of the model and compare the simulation results to ground truth data collected from two physical systems of two computer laboratories. The results demonstrate that the proposed model can be used to study carbon dioxide dispersion and the change of sensors’ readings in closed spaces based on the configurations of the space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al horr, Y., Arif, M., Katafygiotoua, M., Mazroei, A., Kaushik, A., Elsarrag, E.: Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature. Int. J. Sustain. Built Environ. 5(1), 1–11 (2016). https://doi.org/10.1016/j.ijsbe.2016.03.006

    Article  Google Scholar 

  2. Jiang, A., Masooda, M.K., Soh, Y.C., Li, H.: Indoor occupancy estimation from carbon dioxide concentration. Energy Build. 131, 132–141 (2016). https://doi.org/10.1016/j.enbuild.2016.09.002

    Article  Google Scholar 

  3. Labeodan, T., Zeiler, W., Boxem, G., Zhao, Y.: Occupancy measurement in commercial office buildings for demand-driven control applications—a survey and detection system evaluation. Energy Build. 93, 303–314 (2015). https://doi.org/10.1016/j.enbuild.2015.02.028

    Article  Google Scholar 

  4. Khalil, H., Wainer, G., Dunnigan, Z.: Cell-DEVS models for CO2 sensors locations in closed spaces. In: Bae K.-H., et al. (eds.) 2020 Winter Simulation Conference (WSC), Virtual (2020, in press)

    Google Scholar 

  5. Arief-Ang, I.B., Hamilton, M., Salim, F.D.: RUP: large room utilization prediction with carbon dioxide sensor. Pervasive Mob. Comput. 46, 49–72 (2018). https://doi.org/10.1016/j.pmcj.2018.03.001

    Article  Google Scholar 

  6. Wainer, G.: Discrete-event Modeling and Simulation: A Practitioner’s Approach, 1st edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  7. Wainer, G., Giambiasi, N.: Cell-DEVS/GDEVS for complex continuous systems. Simulation 81(2), 137–151 (2005). https://doi.org/10.1177/0037549705052233

    Article  Google Scholar 

  8. Khalil, H., Wainer, G.: Cell-DEVS for social phenomena modeling. IEEE Trans. Comput. Soc. Syst. 7(3), 725–740 (2020). https://doi.org/10.1109/TCSS.2020.2982885

    Article  Google Scholar 

  9. López, A., Wainer, G.: Improved cell-DEVS model definition in CD++. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 803–812. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_83

    Chapter  Google Scholar 

  10. Batog, P., Badura, M.: Dynamic of changes in carbon dioxide concentration in bedrooms. Proc. Eng. 57, 175–182 (2013). https://doi.org/10.1016/j.proeng.2013.04.025

    Article  Google Scholar 

  11. Pantazaras, A., Lee, S.E., Santamouris, M., Yang, J.: Predicting the CO2 levels in buildings using deterministic and identified models. Energy Build. 127, 774–785 (2016). https://doi.org/10.1016/j.enbuild.2016.06.029

    Article  Google Scholar 

  12. Makmul, J.: Microscopic and macroscopic for pedestrian crowds. Dissertation, Mannheim University (2016)

    Google Scholar 

  13. Wainer, G.: CD++: a toolkit to develop DEVS models. Softw.: Pract. Exp. 32(13), 1261–1306 (2002). https://doi.org/10.1002/spe.482

    Article  MATH  Google Scholar 

  14. St-Aubin, B., Wainer, G.: ARSLab DEVS web viewer. https://staubibr.github.io/arslab-prd/app-simple/index.html. Accessed 17 Sept 2020

  15. ASHRAE Standard 62.1 Ventilation for Acceptable Indoor Air Quality (2013). http://www.myiaire.com/product-docs/ultraDRY/ASHRAE62.1.pdf. Accessed 15 Aug 2020

  16. Zuraimi, M.S., Pantazaras, A., Chaturvedi, K.A., Yang, J.J., Tham, K.W., Lee, S.E.: Predicting occupancy counts using physical and statistical CO2-based modeling methodologies. Build. Environ. 123, 517–528 (2017). https://doi.org/10.1016/j.buildenv.2017.07.027

    Article  Google Scholar 

  17. CO2 Spread Indoors. https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/blob/master/User%20Manual.txt. Accessed 18 Sept 2020

  18. ARSLab CO2 Charting. https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/tree/master/scripts/Cell-DEVS_co2-charting. Accessed 20 Sept 2020

  19. ARSLab YouTube. https://www.youtube.com/watch?v=vD7fB2A5hNY. Accessed 20 Sept 2020

Download references

Acknowledgments

The authors would like to thank Thomas Roller for developing the supporting tools that convert floorplans to 3-D scenarios and chart the simulation results [18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalil, H., Wainer, G. (2021). Modeling Carbon Dioxide Dispersion Indoors. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics