Abstract
Thanks to new technologies, it is possible to make an automatic robotic treatment of plants for the mildew in greenhouses. The optimization of the scheduling of this robotic treatment presents a real challenge due to the continue evolution of disease level. The conventional optimization methods can not provide an accurate scheduling capable to eliminate the disease from the greenhouse. This paper proposes a solution to provide a dynamic scheduling problem of evolutionary tasks in horticulture. We first developed a genetic algorithm (GA) for a static model. Then we improved it for the dynamic case where a dynamic genetic algorithm (DGA) based on the prediction of the task amount is developed. To test the performance of the designed algorithms, especially for the dynamic case, we integrated our algorithms in a simulator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, T., Kang, L., Ng, C.: Due-date assignment and single machine scheduling with deteriorating jobs. J. Oper. Res. Soc. 55(2), 198–203 (2004)
Claude, M.: Mildiou de la vigne - bilan de la campagne 2007. In: Actualités Phytosanitaires, pp. 99–105. IFV (2007)
Davis, L.: Handbook of Genetic Algorithms. CumInCAD, NY (1991)
Hassas, S.: Systèmes complexes à base de multi-agents situés. Mémoire d’Habilitation à Diriger les Recherches, University Claude Bernard Lyon (2003)
Li, J., Wang, P., Geng, C.: The disease assessment of cucumber downy mildew based on image processing. In: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp. 480–485. IEEE (2017)
Li, J.Q., Song, M.X., Wang, L., Duan, P.Y., Han, Y.Y., Sang, H.Y., Pan, Q.K.: Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs. IEEE Trans. Cybern. 50, 2425–2439 (2019)
Li, S., Ng, C., Cheng, T.E., Yuan, J.: Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–488 (2011)
Mazar, M., Constant-Meney, V., Sahnoun, M., Baudry, D., Louis, A.: Simulation et optimisation de la tournée des véhicules pour la collecte de biodéchets conditionnés (2017)
Mazar, M., Sahnoun, M., Bettayeb, B., Klement, N., Louis, A.: Simulation and optimization of robotic tasks for UV treatment of diseases in horticulture. Oper. Res. 1–27 (2020). https://doi.org/10.1007/s12351-019-00541-w
Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.G.: A case study of mobile robot’s energy consumption and conservation techniques. In: Proceedings of the 12th International Conference on Advanced Robotics, ICAR 2005, pp. 492–497. IEEE (2005)
Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., Hočevar, M., Baur, J., Pfaff, J., Schütz, C., et al.: Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 146, 203–215 (2016)
Powell, W.B.: Approximate dynamic programming: lessons from the field. In: Simulation Conference, 2008, WSC 2008, Winter, pp. 205–214. IEEE (2008)
Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2015)
Sakai, S., Iida, M., Osuka, K., Umeda, M.: Design and control of a heavy material handling manipulator for agricultural robots. Auton. Robots 25(3), 189–204 (2008)
Sistler, F.: Robotics and intelligent machines in agriculture. IEEE J. Robot. Autom. 3(1), 3–6 (1987)
Southall, B., Hague, T., Marchant, J.A., Buxton, B.F.: An autonomous crop treatment robot: part I a Kalman filter model for localization and crop/weed classification. Int. J. Robot. Res. 21(1), 61–74 (2002)
Takeda, F., Janisiewicz, W., Smith, B., Nichols, B.: A new approach for strawberry disease control. Eur. J. Hortic Sci. 84(1), 3–13 (2019)
Tranier, J.: Vers une vision intégrale des systèmes multi-agents. Ph.D. thesis, Université Montpellier II, Montpellier, Thèse de doctorat (2007)
Wilensky, U., Evanston, I.: NetLogo: Center for Connected Learning and Computer-based Modeling, pp. 49–52. Northwestern University, Evanston (1999)
Wu, T., Powell, W.B., Whisman, A.: The optimizing simulator: an intelligent analysis tool for the military airlift problem. Unpublished Report. Department of Operations Research and Financial Engineering, Princeton University, Princeton (2003)
Xu, Y., Sahnoun, M., Mazar, M., Abdelaziz, F.B., Louis, A.: Packaged bio-waste management simulation model application: Normandy region, France. In: 2019 8th ICMSAO, pp. 1–5. IEEE (2019)
Acknowledgment
This research was possible thanks to €1.35 million financial support from the European Regional Development Fund provided by the Interreg North-West Europe Program in context of UV-Robot project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mazar, M., Bettayeb, B., Klement, N., Sahnoun, M., Louis, A. (2021). Dynamic Scheduling of Robotic Mildew Treatment by UV-c in Horticulture. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Lamouri, S. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2020. Studies in Computational Intelligence, vol 952. Springer, Cham. https://doi.org/10.1007/978-3-030-69373-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-69373-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69372-5
Online ISBN: 978-3-030-69373-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)