Dynamic Scheduling of Robotic Mildew Treatment by UV-c in Horticulture | SpringerLink
Skip to main content

Dynamic Scheduling of Robotic Mildew Treatment by UV-c in Horticulture

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2020)

Abstract

Thanks to new technologies, it is possible to make an automatic robotic treatment of plants for the mildew in greenhouses. The optimization of the scheduling of this robotic treatment presents a real challenge due to the continue evolution of disease level. The conventional optimization methods can not provide an accurate scheduling capable to eliminate the disease from the greenhouse. This paper proposes a solution to provide a dynamic scheduling problem of evolutionary tasks in horticulture. We first developed a genetic algorithm (GA) for a static model. Then we improved it for the dynamic case where a dynamic genetic algorithm (DGA) based on the prediction of the task amount is developed. To test the performance of the designed algorithms, especially for the dynamic case, we integrated our algorithms in a simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, T., Kang, L., Ng, C.: Due-date assignment and single machine scheduling with deteriorating jobs. J. Oper. Res. Soc. 55(2), 198–203 (2004)

    Article  MATH  Google Scholar 

  2. Claude, M.: Mildiou de la vigne - bilan de la campagne 2007. In: Actualités Phytosanitaires, pp. 99–105. IFV (2007)

    Google Scholar 

  3. Davis, L.: Handbook of Genetic Algorithms. CumInCAD, NY (1991)

    Google Scholar 

  4. Hassas, S.: Systèmes complexes à base de multi-agents situés. Mémoire d’Habilitation à Diriger les Recherches, University Claude Bernard Lyon (2003)

    Google Scholar 

  5. Li, J., Wang, P., Geng, C.: The disease assessment of cucumber downy mildew based on image processing. In: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp. 480–485. IEEE (2017)

    Google Scholar 

  6. Li, J.Q., Song, M.X., Wang, L., Duan, P.Y., Han, Y.Y., Sang, H.Y., Pan, Q.K.: Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs. IEEE Trans. Cybern. 50, 2425–2439 (2019)

    Article  Google Scholar 

  7. Li, S., Ng, C., Cheng, T.E., Yuan, J.: Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mazar, M., Constant-Meney, V., Sahnoun, M., Baudry, D., Louis, A.: Simulation et optimisation de la tournée des véhicules pour la collecte de biodéchets conditionnés (2017)

    Google Scholar 

  9. Mazar, M., Sahnoun, M., Bettayeb, B., Klement, N., Louis, A.: Simulation and optimization of robotic tasks for UV treatment of diseases in horticulture. Oper. Res. 1–27 (2020). https://doi.org/10.1007/s12351-019-00541-w

  10. Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.G.: A case study of mobile robot’s energy consumption and conservation techniques. In: Proceedings of the 12th International Conference on Advanced Robotics, ICAR 2005, pp. 492–497. IEEE (2005)

    Google Scholar 

  11. Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., Hočevar, M., Baur, J., Pfaff, J., Schütz, C., et al.: Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 146, 203–215 (2016)

    Article  Google Scholar 

  12. Powell, W.B.: Approximate dynamic programming: lessons from the field. In: Simulation Conference, 2008, WSC 2008, Winter, pp. 205–214. IEEE (2008)

    Google Scholar 

  13. Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2015)

    Article  Google Scholar 

  14. Sakai, S., Iida, M., Osuka, K., Umeda, M.: Design and control of a heavy material handling manipulator for agricultural robots. Auton. Robots 25(3), 189–204 (2008)

    Article  Google Scholar 

  15. Sistler, F.: Robotics and intelligent machines in agriculture. IEEE J. Robot. Autom. 3(1), 3–6 (1987)

    Article  Google Scholar 

  16. Southall, B., Hague, T., Marchant, J.A., Buxton, B.F.: An autonomous crop treatment robot: part I a Kalman filter model for localization and crop/weed classification. Int. J. Robot. Res. 21(1), 61–74 (2002)

    Article  Google Scholar 

  17. Takeda, F., Janisiewicz, W., Smith, B., Nichols, B.: A new approach for strawberry disease control. Eur. J. Hortic Sci. 84(1), 3–13 (2019)

    Article  Google Scholar 

  18. Tranier, J.: Vers une vision intégrale des systèmes multi-agents. Ph.D. thesis, Université Montpellier II, Montpellier, Thèse de doctorat (2007)

    Google Scholar 

  19. Wilensky, U., Evanston, I.: NetLogo: Center for Connected Learning and Computer-based Modeling, pp. 49–52. Northwestern University, Evanston (1999)

    Google Scholar 

  20. Wu, T., Powell, W.B., Whisman, A.: The optimizing simulator: an intelligent analysis tool for the military airlift problem. Unpublished Report. Department of Operations Research and Financial Engineering, Princeton University, Princeton (2003)

    Google Scholar 

  21. Xu, Y., Sahnoun, M., Mazar, M., Abdelaziz, F.B., Louis, A.: Packaged bio-waste management simulation model application: Normandy region, France. In: 2019 8th ICMSAO, pp. 1–5. IEEE (2019)

    Google Scholar 

Download references

Acknowledgment

This research was possible thanks to €1.35 million financial support from the European Regional Development Fund provided by the Interreg North-West Europe Program in context of UV-Robot project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merouane Mazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazar, M., Bettayeb, B., Klement, N., Sahnoun, M., Louis, A. (2021). Dynamic Scheduling of Robotic Mildew Treatment by UV-c in Horticulture. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Lamouri, S. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2020. Studies in Computational Intelligence, vol 952. Springer, Cham. https://doi.org/10.1007/978-3-030-69373-2_36

Download citation

Publish with us

Policies and ethics