A HDL Generator for Flexible and Efficient Finite-Field Multipliers on FPGAs | SpringerLink
Skip to main content

A HDL Generator for Flexible and Efficient Finite-Field Multipliers on FPGAs

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

  • 654 Accesses

Abstract

In this paper we propose a HDL generator for finite-field multipliers on FPGAs. The generated multipliers are based on the CIOS variant of Montgomery multiplication. They are designed to exploit finely the DSPs available on most FPGAs, interleaving independent computations to maximize throughput and DSP’s workload. Beside their throughput-efficiency, these operators can dynamically adapt to different finite-fields by changing both operand width and precomputed elements.

From this flexible and efficient operator base, our HDL generator allows the exploration of a wide range of configurations. This is a valuable asset for specialized circuit designers who wish to tune state-of-the-art IPs and explore design space for their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When fully loaded with instructions, \(\sigma \) operations are outputed every \(s^2 \sigma \) cycles.

  2. 2.

    Speedup = \(\frac{f_\# \left( \frac{p}{4^2} + \frac{1-p}{8^2}\right) }{\frac{f}{8^2}}\).

References

  1. Bossuet, L., Gogniat, G., Philippe, J.L.: Exploration de l’espace de conception des architectures reconfigurables. 25(7), 921–946. https://doi.org/10.3166/tsi.25.921-946

  2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference on ITCS 2012. ACM Press (2012). https://doi.org/10.1145/2090236.2090262

  3. Cathébras, J., Chotin, R.: Finely Pipelined Modular Multiplier (FPMM). https://gitlab.lip6.fr/roselyne/fpmm/. Accessed 12 Aug 2020

  4. Deschamps, J.P., Sutter, G.D., Cantó, E.: Guide to FPGA Implementation of Arithmetic Functions. Springer, Netherlands (2012). https://doi.org/10.1007/978-94-007-2987-2

    Book  MATH  Google Scholar 

  5. Gallin, G., Tisserand, A.: Generation of finely-pipelined GF(P) multipliers for flexible curve based cryptography on FPGAs, pp. 1–12. https://doi.org/10.1109/TC.2019.2920352

  6. Gallin, G., Tisserand, A.: Hyper-Threaded Modular Multipliers (HTMM). https://sourcesup.renater.fr/www/htmm/. Accessed 25 Feb 2020

  7. Gallin, G., Tisserand, A.: Hyper-threaded multiplier for HECC. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE (2017). https://doi.org/10.1109/acssc.2017.8335378

  8. Koc, C.K., Acar, T., Kaliski, B.: Analyzing and comparing montgomery multiplication algorithms. IEEE Micro 16(3), 26–33 (1996). https://doi.org/10.1109/40.502403

    Article  Google Scholar 

  9. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic processor for generic curves over GF\((p)\). In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 421–437. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_21

    Chapter  Google Scholar 

  10. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519 (1985). https://doi.org/10.1090/s0025-5718-1985-0777282-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Morales-Sandoval, M., Diaz-Perez, A.: Scalable GF(P) montgomery multiplier based on a digit-digit computation approach. IET Comput. Digit. Tech. 10(3), 102–109 (2016). https://doi.org/10.1049/iet-cdt.2015.0055

    Article  Google Scholar 

  12. Mrabet, A., et al.: A scalable and systolic architectures of montgomery modular multiplication for public key cryptosystems based on DSPs. J. Hardw. Syst. Secur. 1(3), 219–236 (2017). https://doi.org/10.1007/s41635-017-0018-x

    Article  Google Scholar 

  13. Pimentel, A.D.: Exploring exploration: a tutorial introduction to embedded systems design space exploration. IEEE Des. Test 34(1), 77–90 (2016). https://doi.org/10.1109/mdat.2016.2626445

    Article  Google Scholar 

  14. Walter, C.: Montgomery exponentiation needs no final subtractions. Electron. Lett. 35(21), 1831 (1999). https://doi.org/10.1049/el:19991230

    Article  Google Scholar 

Download references

Ackowledgments

We would like to thank Arnaud Tisserand for our interesting exchanges and his encouragement to publish these results; as well as the anonymous reviewers for their pertinent and welcome remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Cathébras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cathébras, J., Chotin, R. (2021). A HDL Generator for Flexible and Efficient Finite-Field Multipliers on FPGAs. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics