VA2Mass: Towards the Fluid Filling Mass Estimation via Integration of Vision and Audio Learning | SpringerLink
Skip to main content

VA2Mass: Towards the Fluid Filling Mass Estimation via Integration of Vision and Audio Learning

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12668))

Included in the following conference series:

Abstract

Robotic perception of filling mass estimation via multiple sensors and deep learning approaches is still an open problem due to the diverse pouring durations, small pixel ratio for target objects and complex pouring scenarios. In this paper, we propose a practical solution to tackle this challenging task via estimating filling level, filling type and container capacity simultaneously. The proposed method is inspired by how humans observe and understand the pouring process via the cooperation among multiple modalities, i.e., vision and audio. In a nutshell, our proposed method is divided into three folds to help the agent shape a rich understanding of the pouring procedure. First, the agent obtains the prior of container categories (i.e., cup, glass or box) through the object detection framework. Second, we integrate the audio features with the prior to make the agent learn a multi-modal feature space. Finally, the agent infers the distribution of both the container capacity and fluid properties. The experimental results show the effectiveness of the proposed method, which ranked as \(2^{nd}\) runner-up in the CORSMAL Challenge of Multi-modal Fusion and Learning For Robotics in ICPR 2020.

The work described in this paper was partially supported by grant from Guangdong-Hong Kong-Macau Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (No. 20019009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xompero, R.A., Sanchez-Matilla,R.M., Cavallaro, A.: CORSMAL Containers Manipulation (1.0) [Data set]. https://doi.org/10.17636/101CORSMAL1

  2. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

    Google Scholar 

  3. Bae, H., et al.: Iros 2019 lifelong robotic vision: object recognition challenge [competitions]. IEEE Rob. Autom. Mag 27(2), 11–16 (2020)

    Article  Google Scholar 

  4. Bhattacharyya, R., Floerkemeier, C., Sarma, S.: Rfid tag antenna based sensing: does your beverage glass need a refill? In: 2010 IEEE International Conference on RFID (IEEE RFID 2010), pp. 126–133. IEEE (2010)

    Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  6. Brandi, S., Kroemer, O., Peters, J.: Generalizing pouring actions between objects using warped parameters. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 616–621. IEEE (2014)

    Google Scholar 

  7. Clarke, S., Rhodes, T., Atkeson, C.G., Kroemer, O.: Learning audio feedback for estimating amount and flow of granular material. Proc. Mach. Learn. Res. 87 (2018)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Do, C., Burgard, W.: Accurate pouring with an autonomous robot using an RGB-D camera. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds.) IAS 2018. AISC, vol. 867, pp. 210–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01370-7_17

    Chapter  Google Scholar 

  10. Do, C., Schubert, T., Burgard, W.: A probabilistic approach to liquid level detection in cups using an RGB-D camera. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2075–2080. IEEE (2016)

    Google Scholar 

  11. Griffith, S., Sukhoy, V., Wegter, T., Stoytchev, A.: Object categorization in the sink: Learning behavior-grounded object categories with water. In: Proceedings of the 2012 ICRA Workshop on Semantic Perception, Mapping and Exploration. Citeseer (2012)

    Google Scholar 

  12. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  13. Huang, Y., Sun, Y.: Learning to pour. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7005–7010. IEEE (2017)

    Google Scholar 

  14. Ikeno, S., Watanabe, R., Okazaki, R., Hachisu, T., Sato, M., Kajimoto, H.: Change in the amount poured as a result of vibration when pouring a liquid. In: Kajimoto, H., Ando, H., Kyung, K.-U. (eds.) Haptic Interaction. LNEE, vol. 277, pp. 7–11. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-55690-9_2

    Chapter  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Rob. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  18. Liang, H., et al.: Making sense of audio vibration for liquid height estimation in robotic pouring. arXiv preprint arXiv:1903.00650 (2019)

  19. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. McFee, B., et al.: librosa: audio and music signal analysis in python. In: Proceedings of the 14th Python in Science Conference, vol. 8, pp. 18–25 (2015)

    Google Scholar 

  21. Muhlig, M., Gienger, M., Hellbach, S., Steil, J.J., Goerick, C.: Task-level imitation learning using variance-based movement optimization. In: 2009 IEEE International Conference on Robotics and Automation, pp. 1177–1184. IEEE (2009)

    Google Scholar 

  22. Nair, A., Bahl, S., Khazatsky, A., Pong, V., Berseth, G., Levine, S.: Contextual imagined goals for self-supervised robotic learning. In: Conference on Robot Learning, pp. 530–539. PMLR (2020)

    Google Scholar 

  23. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 763–768. IEEE (2009)

    Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Neural Information Processing Systems (NeurIPS), pp. 8024–8035 (2019)

    Google Scholar 

  25. Paulius, D., Huang, Y., Milton, R., Buchanan, W.D., Sam, J., Sun, Y.: Functional object-oriented network for manipulation learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2655–2662. IEEE (2016)

    Google Scholar 

  26. Paulius, D., Jelodar, A.B., Sun, Y.: Functional object-oriented network: Construction & expansion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)

    Google Scholar 

  27. Pierson, H.A., Gashler, M.S.: Deep learning in robotics: a review of recent research. Adv. Rob. 31(16), 821–835 (2017)

    Article  Google Scholar 

  28. Pithadiya, K.J., Modi, C.K., Chauhan, J.D.: Selecting the most favourable edge detection technique for liquid level inspection in bottles. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. (IJCISIM) ISSN, 2150–7988 (2011)

    Google Scholar 

  29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  30. Rozo, L., Jiménez, P., Torras, C.: Force-based robot learning of pouring skills using parametric hidden Markov models. In: 9th International Workshop on Robot Motion and Control, pp. 227–232. IEEE (2013)

    Google Scholar 

  31. Saal, H.P., Ting, J.A., Vijayakumar, S.: Active estimation of object dynamics parameters with tactile sensors. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 916–921. IEEE (2010)

    Google Scholar 

  32. Sanchez-Matilla, R., et al.: Benchmark for human-to-robot handovers of unseen containers with unknown filling. IEEE Rob. Autom. Lett. 5(2), 1642–1649 (2020)

    Article  Google Scholar 

  33. She, Q., et al.: Openloris-object: a robotic vision dataset and benchmark for lifelong deep learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4767–4773. IEEE (2020)

    Google Scholar 

  34. Shi, X., et al.: Are we ready for service robots? the openloris-scene datasets for lifelong slam. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3139–3145. IEEE (2020)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, vol. 2015 (2015)

    Google Scholar 

  36. Yang, P.C., Sasaki, K., Suzuki, K., Kase, K., Sugano, S., Ogata, T.: Repeatable folding task by humanoid robot worker using deep learning. IEEE Rob. Autom. Lett 2(2), 397–403 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa H. M. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Feng, F., Lan, C., Chan, R.H.M. (2021). VA2Mass: Towards the Fluid Filling Mass Estimation via Integration of Vision and Audio Learning. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics