Abstract
AI techniques for mainstream spoken languages have seen a great deal of progress in recent years, with technologies for transcription, translation and text processing becoming commercially available. However, no such technologies have been developed for sign languages, which, as visual-gestural languages, require multimodal processing approaches. This paper presents a plan to develop an Auslan Communication Technologies Pipeline (Auslan CTP), a prototype AI system enabling Auslan-in, Auslan-out interactions, to demonstrate the feasibility of Auslan-based machine interaction and language processing. Such a system has a range of applications, including gestural human-machine interfaces, educational tools, and translation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir, A., et al.: DVS128 Gesture Dataset (2017). http://www.research.ibm.com/dvsgesture/
Back, A.D., Angus, D., Wiles, J.: Transitive entropy—a rank ordered approach for natural sequences. IEEE J. Sel. Top. Signal Process. 14(2), 312–321 (2019). https://doi.org/10.1109/JSTSP.2019.2939998
Bavelier, D., Corina, D.P., Neville, H.J.: Brain and language: a perspective from sign language. Neuron 21, 275–278 (1998)
Bowden, R., Zisserman, A., Kadir, T., Brady, M.: Vision based interpretation of natural sign languages. In: Proceedings of the 3rd International Conference on Computer Vision Systems (2003). http://info.ee.surrey.ac.uk/Personal/R.Bowden/publications/icvs03/icvs03pap.pdf
Brashear, H., Henderson, V., Park, K.H., Hamilton, H., Lee, S., Starner, T.: American sign language recognition in game development for deaf children. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility-Assets 2006, p. 79 (2006). https://doi.org/10.1145/1168987.1169002, http://portal.acm.org/citation.cfm?doid=1168987.1169002
Ceruti, M.G., et al.: Wireless communication glove apparatus for motion tracking, gesture recognition, data transmission, and reception in extreme environments. In: Proceedings of the ACM Symposium on Applied Computing, pp. 172–176 (2009). https://doi.org/10.1145/1529282.1529320
da Rocha Costa, A.C., Dimuro, G.P.: SignWriting and SWML: paving the way to sign language processing. In: Traitement Automatique des Langues Naturelles (TALN). Batz-sur-Mer, France (2003)
Efthimiou, E., Sapountzaki, G., Karpouzis, K., Fotinea, S.-E.: Developing an e-learning platform for the Greek sign language. In: Miesenberger, Klaus, Klaus, Joachim, Zagler, Wolfgang L., Burger, Dominique (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 1107–1113. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27817-7_163
Elliott, R., Glauert, J.R., Kennaway, J.R., Marshall, I., Safar, E.: Linguistic modelling and language-processing technologies for avatar-based sign language presentation. Univ. Access Inf. Soc. 6(4), 375–391 (2008). https://doi.org/10.1007/s10209-007-0102-z
Hanke, T.: HamNoSys—representing sign language data in language resources and language processing contexts. In: LREC 2004, Workshop Proceedings: Representation and Processing of Sign Languages, pp. 1–6 (2004). http://www.sign-lang.uni-hamburg.de/dgs-korpus/files/inhalt_pdf/HankeLRECSLP2004_05.pdf
Holden, E.J., Lee, G., Owens, R.: Australian Sign Language recognition. Mach. Vis. Appl. 16(5), 312–320 (2005). https://doi.org/10.1007/s00138-005-0003-1
Huawei: StorySign: Helping Deaf Children Learn to Read (2018). https://consumer.huawei.com/au/campaign/storysign/
Johnston, T.: Auslan Corpus (2008). https://elar.soas.ac.uk/Collection/MPI55247
Johnston, T.: Auslan Corpus Annotation Guidelines. Technical Report, Macquarie University & La Trobe University, Sydney and Melbourne Australia (2016). http://media.auslan.org.au/attachments/Johnston_AuslanCorpusAnnotationGuidelines_February2016.pdf
Johnston, T.: Wrangling and Structuring a Sign-Language Corpus: The Auslan Dictionary. Presentation at CoEDL Fest (2019)
Johnston, T., Schembri, A.: Australian Sign Language (Auslan): An Introduction to Sign Language Linguistics. Cambridge University Press, Cambridge, UK (2007)
Johnston, T., Schembri, A.: Variation, lexicalization and grammaticalization in signed languages. Langage et société, 1(131), 19–35 (2010)
Kadous, M.W.: Auslan sign recognition using computers and gloves. In: Deaf Studies Research Symposium (1998). https://www.doi.org/10.1.1.51.3816, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3816
Kadous, W.: GRASP: Recognition of Australian Sign Language Using Instrumented Gloves. Ph.D. thesis, The University of New South Wales (1995)
Kipp, M., Nguyen, Q., Heloir, A., Matthes, S.: Assessing the Deaf user perspective on sign language avatars. In: The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, Dundee, Scotland, UK, pp. 107–114. ACM (2011). https://doi.org/10.1145/2049536.2049557
Lebron, J.: Recognizing Military Gestures: Developing a Gesture Recognition Interface. Technical Report, Union College, Schenectady, NY, USA (2013). http://orzo.union.edu/Archives/SeniorProjects/2013/CS.2013/
Li, Y., Chen, X., Zhang, X., Wang, K., Wang, Z.J.: A sign-component-based framework for Chinese sign language recognition using accelerometer and sEMG data. IEEE Trans. Biomed. Eng. 59(10), 2695–2704 (2012). https://doi.org/10.1109/TBME.2012.2190734
Liao, Y., Xiong, P., Min, W., Min, W., Lu, J.: Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks. IEEE Access,7, 38044–38054 (2019). https://doi.org/10.1109/ACCESS.2019.2904749, https://ieeexplore.ieee.org/document/8667292/
Ong, S.C.W., Hsu, D., Lee, W.S., Kurniawati, H.: Partially observable Markov decision process (POMDP) technologies for sign language based human-computer interaction. In: Proceedings of the International Conference on Human-Computer Interaction (2009)
Parton, B.S.: Sign language recognition and translation: a multidisciplined approach from the field of artificial intelligence. J. Deaf Stud. Deaf Educ. 11(1), 94–101 (2006). https://doi.org/10.1093/deafed/enj003
Pigou, Lionel., Dieleman, Sander., Kindermans, Pieter-Jan, Schrauwen, Benjamin: Sign language recognition using convolutional neural networks. In: Agapito, Lourdes, Bronstein, Michael M., Rother, Carsten (eds.) ECCV 2014. LNCS, vol. 8925, pp. 572–578. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_40
Pisharady, P.K., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition: a review. Comput. Vis. Image Underst. 141(December), 152–165 (2015). https://doi.org/10.1016/j.cviu.2015.08.004
Sahoo, A.K., Mishra, G.S., Ravulakollu, K.K.: Sign language recognition: state of the art. ARPN J. Eng. Appl. Sci. 9(2), 116–134 (2014)
Sathiyanarayanan, M., Azharuddin, S., Kumar, S., Khan, G.: Gesture controlled robot for military purpose. Int. J. Technol. Res. Eng. 1(11), 2347–4718 (2014). www.ijtre.com
So, C.K.F., Baciu, G.: Entropy-based Motion Extraction for Motion Capture Animation, pp. 225–235 (2005). https://www.doi.org/10.1002/cav.107
Starner, T., Pentland, A.: Visual Recognition of American Sign Language using Hidden Markov Models. In: Proceedings of the International Workshop on Automatic Face-and Gesture-Recognition, Zurich, Switzerland, pp. 189–194 (1995)
Stoll, S., Cihan Camgoz, N., Hadfield, S., Bowden, R.: Text2Sign: towards sign language production using neural machine translation and generative adversarial networks. Int. J. Comput. Vis. (2019). https://doi.org/10.1007/s11263-019-01281-2
Suh, I.H., Lee, S.H., Cho, N.J., Kwon, W.Y.: Measuring motion significance and motion complexity. Inf. Sci. 388–389, 84–98 (2017). https://doi.org/10.1016/j.ins.2017.01.027
Sutton, V.: What is SignWriting? https://www.signwriting.org/about/what/what02.html
Twenty Billion Neurons GmbH: twentybn (2019). https://20bn.com/datasets/jester/v1
University of East Anglia: Virtual Humans Research for Sign Language Animation. http://vh.cmp.uea.ac.uk/index.php/Main_Page
University of Hamburg: eSign Overview. https://www.sign-lang.uni-hamburg.de/esign/overview.html
Verlinden, M., Zwitserlood, I., Frowein, H.: Multimedia with animated sign language for deaf learners. In: Kommers, P., Richards, G. (eds.) World Conference on Educational Multimedia, Hypermedia and Telecommunications, Montreal, Canada, June 2005. https://www.learntechlib.org/p/20829/
World Federation of the Deaf, World Association of Sign Langauge Interpreters: WFD and WASLI Statement on Use of Signing Avatars. Technical Report April, Helsinki, Finland/Melbourne, Australia (2018). https://wfdeaf.org/news/resources/wfd-wasli-statement-use-signing-avatars/
Acknowledgements
Many thanks to the project mentors who provided guidance and feedback on this paper: Professor Trevor Johnston, Dr Adam Schembri, Dr Ashfin Rahimi and Associate Professor Marcus Gallagher.
The research for this paper received funding from the Australian Government through the Defence Cooperative Research Centre for Trusted Autonomous Systems. The DCRC-TAS receives funding support from the Queensland Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Korte, J., Bender, A., Gallasch, G., Wiles, J., Back, A. (2020). A Plan for Developing an Auslan Communication Technologies Pipeline. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-66096-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66095-6
Online ISBN: 978-3-030-66096-3
eBook Packages: Computer ScienceComputer Science (R0)