Abstract
The need to count the number of parts per object arises in many yield estimation problems, like counting the number of bananas in a bunch, or the number of spikelets in a wheat spike. We propose a two-stage detection and counting approach for such tasks, operating in field conditions with multiple objects per image. The approach is implemented as a single network, tested on the two mentioned problems. Experiments were conducted to find the optimal counting architecture and the most suitable training configuration. In both problems, the approach showed promising results, achieving a mean relative deviation in range of \(11\%\)–\(12\%\) of the total visible count. For wheat, the method was tested in estimating the average count in an image, and was shown to be preferable to a simpler alternative. For bananas, estimation of the actual physical bunch count was tested, yielding mean relative deviation of \(12.4\%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aich, S., et al.: Deepwheat: Estimating phenotypic traits from crop images with deep learning. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2018), pp. 323–332. IEEE (2018)
Alharbi, N., Zhou, J., Wang, W.: Automatic counting of wheat spikes from wheat growth images (2018)
Alkhudaydi, T., Zhou, J., De La lglesia, B.: SpikeletFCN: counting spikelets from infield wheat crop images using fully convolutional networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_1
Arad, B., et al.: Development of a sweet pepper harvesting robot. J. Field Robot. 37, 1027–1039 (2020)
Baharav, T., Bariya, M., Zakhor, A.: In situ height and width estimation of sorghum plants from 2.5 d infrared images. Electron. Imaging 2017(17), 122–135 (2017)
Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)
Bell, J., Dee, H.: Aberystwyth leaf evaluation dataset. (17–36), 2 (2016). https://doi.org/10.5281/zenodo.168158
Berenstein, R., Shahar, O.B., Shapiro, A., Edan, Y.: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 3(4), 233–243 (2010)
Cholakkal, H., Sun, G., Khan, F.S., Shao, L.: Object counting and instance segmentation with image-level supervision. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Dias, P.A., Tabb, A., Medeiros, H.: Apple flower detection using deep convolutional networks. Comput. Ind. 99, 17–28 (2018)
Dobrescu, A., Valerio Giuffrida, M., Tsaftaris, S.A.: Leveraging multiple datasets for deep leaf counting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2072–2079 (2017)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Farjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V.: Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 1–19 (2019)
Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz, M.T., Araus, J.L.: Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images. Plant Methods 14(1), 22 (2018)
Fuentes, A., Yoon, S., Kim, S.C., Park, D.S.: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9), 2022 (2017)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Hasan, M.M., Chopin, J.P., Laga, H., Miklavcic, S.J.: Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14(1), 100 (2018)
Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 105–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_8
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Itzhaky, Y., Farjon, G., Khoroshevsky, F., Shpigler, A., Bar-Hillel, A.: Leaf counting: multiple scale regression and detection using deep CNNs. In: BMVC, p. 328 (2018)
Kamilaris, A., Prenafeta-Boldú, F.X.: A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156(3), 312–322 (2018)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)
Kurtser, P., Ringdahl, O., Rotstein, N., Berenstein, R., Edan, Y.: In-field grape cluster size assessment for vine yield estimation using a mobile robot and a consumer level RGB-D camera. IEEE Robot. Autom. Lett. 5(2), 2031–2038 (2020)
Le, T.T., Lin, C.Y., et al.: Deep learning for noninvasive classification of clustered horticultural crops – a case for banana fruit tiers. Postharvest Biol. Technol. 156, 110922 (2019)
Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, pp. 1324–1332 (2010)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Linker, R.: A procedure for estimating the number of green mature apples in night-time orchard images using light distribution and its application to yield estimation. Precis. Agric. 18(1), 59–75 (2017)
Liu, T., Wu, W., Chen, W., Sun, C., Zhu, X., Guo, W.: Automated image-processing for counting seedlings in a wheat field. Precis. Agric. 17(4), 392–406 (2016)
Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lu, H., Cao, Z., Xiao, Y., Zhuang, B., Shen, C.: TasselNet: counting maize tassels in the wild via local counts regression network. Plant Methods 13(1), 79 (2017)
Madec, S., et al.: Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 264, 225–234 (2019)
Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)
Neupane, B., Horanont, T., Hung, N.D.: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE 14(10), e0223906 (2019)
Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Count-ception: Counting by fully convolutional redundant counting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 18–26 (2017)
Pound, M.P., Atkinson, J.A., Wells, D.M., Pridmore, T.P., French, A.P.: Deep learning for multi-task plant phenotyping. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2055–2063 (2017)
Qiongyan, L., Cai, J., Berger, B., Okamoto, M., Miklavcic, S.J.: Detecting spikes of wheat plants using neural networks with laws texture energy. Plant Methods 13(1), 83 (2017)
Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: Deepfruits: a fruit detection system using deep neural networks. Sensors 16(8), 1222 (2016)
Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020)
Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using contextual pyramid CNNs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1861–1870 (2017)
Tan, M., Pang, R., Le, Q.: Efficientdet: Scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)
Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)
Turner, D., Mulder, J., Daniells, J.: Fruit numbers on bunches of bananas can be estimated rapidly. Sci. Hortic. 34(3–4), 265–274 (1988)
Vit, A., Shani, G., Bar-Hillel, A.: Length phenotyping with interest point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Wairegi, L., Van Asten, P., Tenywa, M., Bekunda, M.: Quantifying bunch weights of the east African highland bananas (Musa spp. AAA-EA) using non-destructive field observations. Sci. Hortic. 121(1), 63–72 (2009)
Wang, Z., Underwood, J., Walsh, K.B.: Machine vision assessment of mango orchard flowering. Comput. Electron. Agric. 151, 501–511 (2018)
Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., Shen, C.: TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods 15(1), 150 (2019)
Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2878–2890 (2012)
Zheng, Y.Y., Kong, J.L., Jin, X.B., Wang, X.Y., Su, T.L., Zuo, M.: CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)
Zhou, C., Liang, D., Yang, X., Yang, H., Yue, J., Yang, G.: Wheat ears counting in field conditions based on multi-feature optimization and TWSVM. Front. Plant Sci. 9, 1024 (2018)
Acknowledgements
This research was supported by the Generic technological R&D program of the Israel innovation authority, the Phenomics consortium and the Ministry of Science & Technology, Israel.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Khoroshevsky, F., Khoroshevsky, S., Markovich, O., Granitz, O., Bar-Hillel, A. (2020). Phenotyping Problems of Parts-per-Object Count. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-65414-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65413-9
Online ISBN: 978-3-030-65414-6
eBook Packages: Computer ScienceComputer Science (R0)