Phenotyping Problems of Parts-per-Object Count | SpringerLink
Skip to main content

Phenotyping Problems of Parts-per-Object Count

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12540))

Included in the following conference series:

Abstract

The need to count the number of parts per object arises in many yield estimation problems, like counting the number of bananas in a bunch, or the number of spikelets in a wheat spike. We propose a two-stage detection and counting approach for such tasks, operating in field conditions with multiple objects per image. The approach is implemented as a single network, tested on the two mentioned problems. Experiments were conducted to find the optimal counting architecture and the most suitable training configuration. In both problems, the approach showed promising results, achieving a mean relative deviation in range of \(11\%\)\(12\%\) of the total visible count. For wheat, the method was tested in estimating the average count in an image, and was shown to be preferable to a simpler alternative. For bananas, estimation of the actual physical bunch count was tested, yielding mean relative deviation of \(12.4\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aich, S., et al.: Deepwheat: Estimating phenotypic traits from crop images with deep learning. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2018), pp. 323–332. IEEE (2018)

    Google Scholar 

  2. Alharbi, N., Zhou, J., Wang, W.: Automatic counting of wheat spikes from wheat growth images (2018)

    Google Scholar 

  3. Alkhudaydi, T., Zhou, J., De La lglesia, B.: SpikeletFCN: counting spikelets from infield wheat crop images using fully convolutional networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_1

    Chapter  Google Scholar 

  4. Arad, B., et al.: Development of a sweet pepper harvesting robot. J. Field Robot. 37, 1027–1039 (2020)

    Article  Google Scholar 

  5. Baharav, T., Bariya, M., Zakhor, A.: In situ height and width estimation of sorghum plants from 2.5 d infrared images. Electron. Imaging 2017(17), 122–135 (2017)

    Article  Google Scholar 

  6. Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)

    Article  Google Scholar 

  7. Bell, J., Dee, H.: Aberystwyth leaf evaluation dataset. (17–36), 2 (2016). https://doi.org/10.5281/zenodo.168158

  8. Berenstein, R., Shahar, O.B., Shapiro, A., Edan, Y.: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 3(4), 233–243 (2010)

    Article  Google Scholar 

  9. Cholakkal, H., Sun, G., Khan, F.S., Shao, L.: Object counting and instance segmentation with image-level supervision. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Dias, P.A., Tabb, A., Medeiros, H.: Apple flower detection using deep convolutional networks. Comput. Ind. 99, 17–28 (2018)

    Article  Google Scholar 

  11. Dobrescu, A., Valerio Giuffrida, M., Tsaftaris, S.A.: Leveraging multiple datasets for deep leaf counting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2072–2079 (2017)

    Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Farjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V.: Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 1–19 (2019)

    Google Scholar 

  14. Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz, M.T., Araus, J.L.: Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images. Plant Methods 14(1), 22 (2018)

    Article  Google Scholar 

  15. Fuentes, A., Yoon, S., Kim, S.C., Park, D.S.: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9), 2022 (2017)

    Article  Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  17. Hasan, M.M., Chopin, J.P., Laga, H., Miklavcic, S.J.: Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14(1), 100 (2018)

    Article  Google Scholar 

  18. Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 105–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_8

    Chapter  Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Itzhaky, Y., Farjon, G., Khoroshevsky, F., Shpigler, A., Bar-Hillel, A.: Leaf counting: multiple scale regression and detection using deep CNNs. In: BMVC, p. 328 (2018)

    Google Scholar 

  22. Kamilaris, A., Prenafeta-Boldú, F.X.: A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156(3), 312–322 (2018)

    Article  Google Scholar 

  23. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  24. Kurtser, P., Ringdahl, O., Rotstein, N., Berenstein, R., Edan, Y.: In-field grape cluster size assessment for vine yield estimation using a mobile robot and a consumer level RGB-D camera. IEEE Robot. Autom. Lett. 5(2), 2031–2038 (2020)

    Article  Google Scholar 

  25. Le, T.T., Lin, C.Y., et al.: Deep learning for noninvasive classification of clustered horticultural crops – a case for banana fruit tiers. Postharvest Biol. Technol. 156, 110922 (2019)

    Article  Google Scholar 

  26. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, pp. 1324–1332 (2010)

    Google Scholar 

  27. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  29. Linker, R.: A procedure for estimating the number of green mature apples in night-time orchard images using light distribution and its application to yield estimation. Precis. Agric. 18(1), 59–75 (2017)

    Article  Google Scholar 

  30. Liu, T., Wu, W., Chen, W., Sun, C., Zhu, X., Guo, W.: Automated image-processing for counting seedlings in a wheat field. Precis. Agric. 17(4), 392–406 (2016)

    Article  Google Scholar 

  31. Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  32. Lu, H., Cao, Z., Xiao, Y., Zhuang, B., Shen, C.: TasselNet: counting maize tassels in the wild via local counts regression network. Plant Methods 13(1), 79 (2017)

    Article  Google Scholar 

  33. Madec, S., et al.: Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 264, 225–234 (2019)

    Article  Google Scholar 

  34. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)

    Article  Google Scholar 

  35. Neupane, B., Horanont, T., Hung, N.D.: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE 14(10), e0223906 (2019)

    Article  Google Scholar 

  36. Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Count-ception: Counting by fully convolutional redundant counting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 18–26 (2017)

    Google Scholar 

  37. Pound, M.P., Atkinson, J.A., Wells, D.M., Pridmore, T.P., French, A.P.: Deep learning for multi-task plant phenotyping. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2055–2063 (2017)

    Google Scholar 

  38. Qiongyan, L., Cai, J., Berger, B., Okamoto, M., Miklavcic, S.J.: Detecting spikes of wheat plants using neural networks with laws texture energy. Plant Methods 13(1), 83 (2017)

    Article  Google Scholar 

  39. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)

    Article  Google Scholar 

  40. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  42. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: Deepfruits: a fruit detection system using deep neural networks. Sensors 16(8), 1222 (2016)

    Article  Google Scholar 

  43. Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020)

    Article  Google Scholar 

  44. Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using contextual pyramid CNNs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1861–1870 (2017)

    Google Scholar 

  45. Tan, M., Pang, R., Le, Q.: Efficientdet: Scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)

  46. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  47. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)

  48. Turner, D., Mulder, J., Daniells, J.: Fruit numbers on bunches of bananas can be estimated rapidly. Sci. Hortic. 34(3–4), 265–274 (1988)

    Article  Google Scholar 

  49. Vit, A., Shani, G., Bar-Hillel, A.: Length phenotyping with interest point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  50. Wairegi, L., Van Asten, P., Tenywa, M., Bekunda, M.: Quantifying bunch weights of the east African highland bananas (Musa spp. AAA-EA) using non-destructive field observations. Sci. Hortic. 121(1), 63–72 (2009)

    Article  Google Scholar 

  51. Wang, Z., Underwood, J., Walsh, K.B.: Machine vision assessment of mango orchard flowering. Comput. Electron. Agric. 151, 501–511 (2018)

    Article  Google Scholar 

  52. Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., Shen, C.: TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods 15(1), 150 (2019)

    Article  Google Scholar 

  53. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2878–2890 (2012)

    Article  Google Scholar 

  54. Zheng, Y.Y., Kong, J.L., Jin, X.B., Wang, X.Y., Su, T.L., Zuo, M.: CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)

    Article  Google Scholar 

  55. Zhou, C., Liang, D., Yang, X., Yang, H., Yue, J., Yang, G.: Wheat ears counting in field conditions based on multi-feature optimization and TWSVM. Front. Plant Sci. 9, 1024 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Generic technological R&D program of the Israel innovation authority, the Phenomics consortium and the Ministry of Science & Technology, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faina Khoroshevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoroshevsky, F., Khoroshevsky, S., Markovich, O., Granitz, O., Bar-Hillel, A. (2020). Phenotyping Problems of Parts-per-Object Count. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics