MPB: Multi-Peak Binarization for Pupil Detection | SpringerLink
Skip to main content

MPB: Multi-Peak Binarization for Pupil Detection

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2020)

Abstract

Automatic pupil detection is a fundamental part of eye-related tasks like eye tracking, gaze estimation and eye movement identification. Especially, in ophthalmology, to provide assistance and fulfil the demand of diagnosis and treatment, an accurate and real-time algorithm is required. In this paper, we propose a fast and robust Multi-Peak Binarization (MPB) based method for pupil detection in ophthalmology scenarios. A novel strategy for region of interest and candidate connected area detection is presented. Constraints for pruning the irregular shapes and accelerating the MPB algorithm are defined. The proposed method is evaluated on an open-dataset and the experimental results demonstrate the high performance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Object 3 and 5, including 6 samples, are dropped out.

References

  1. Fasel, I.R., Fortenberry, B., Movellan, J.R.: A generative framework for real time object detection and classification. Comput. Vis. Image Underst. 98(1), 182–210 (2005)

    Article  Google Scholar 

  2. Fitzgibbon, A.W., Fisher, R.B.: A buyers guide to conic fitting. In: Pycock, D. (ed.), Proceedings of the British Machine Vision Conference, BMVC 1995, Birmingham, UK, September 1995, pp. 1–10. BMVA Press (1995)

    Google Scholar 

  3. Fuhl, W., Santini, T., Kasneci, G., Kasneci, E.: PupilNet: convolutional neural networks for robust pupil detection. CoRR abs/1601.04902 (2016)

  4. Fuhl, W., Tonsen, M., Bulling, A., Kasneci, E.: Pupil detection for head-mounted eye tracking in the wild: an evaluation of the state of the art. Mach. Vis. Appl. 27(8), 1275–1288 (2016)

    Article  Google Scholar 

  5. Fuhl, W., Santini, T.C., Kübler, T.C., Kasneci, E.: ElSe: ellipse selection for robust pupil detection in real-world environments. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research and Applications, pp. 123–130. ACM (2016)

    Google Scholar 

  6. Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., Kasneci, E.: ExCuSe: robust pupil detection in real-world scenarios. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 39–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_4

    Chapter  Google Scholar 

  7. Hansen, D.W., Ji, Q.: In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2010)

    Article  Google Scholar 

  8. Hennessey, C., Lawrence, P.D.: 3D point-of-gaze estimation on a volumetric display. In: Proceedings of the 2008 Symposium on Eye Tracking Research and Applications, ETRA 2008, p. 59. Association for Computing Machinery (2008)

    Google Scholar 

  9. Huang, W., Mariani, R.: Face detection and precise eyes location. In: Proceedings of the 15th International Conference on Pattern Recognition, ICPR00, Barcelona, Spain, 3–8 September 2000, pp. 4722–4727. IEEE Computer Society (2000)

    Google Scholar 

  10. Javadi, A.H., Hakimi, Z., Barati, M., Walsh, V., Tcheang, L.: SET: a pupil detection method using sinusoidal approximation. Front. Neuroengineering 8, 4 (2015)

    Article  Google Scholar 

  11. Kasneci, E.: Towards the Automated Recognition of Assistance Need for Drivers with Impaired Visual Field. Universitt Tübingen, Tübingen (2013)

    Google Scholar 

  12. Xu, Y., Zhang, Z., Lu, G., Yang, J.: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recogn. 54, 68–82 (2016)

    Article  Google Scholar 

  13. Kim, K.N., Ramakrishna, R.S.: Vision-based eye-gaze tracking for human computer interface. In: IEEE SMC 1999 Conference Proceedings, 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028) (2002)

    Google Scholar 

  14. Liu, X., Xu, F., Fujimura, K.: Real-time eye detection and tracking for driver observation under various light conditions. In: Intelligent Vehicle Symposium, vol. 2, pp. 344–351. IEEE (2002)

    Google Scholar 

  15. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Conference on Computer Vision and Pattern Recognition, CVPR 1994, 21–23 June 1994, pp. 84–91. IEEE, Seattle (1994)

    Google Scholar 

  16. Swirski, L., Bulling, A., Dodgson, N.A.: Robust real-time pupil tracking in highly off-axis images. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 173–176. ACM (2012)

    Google Scholar 

  17. Tian, Y., Kanade, T., Cohn, J.F.: Dual-state parametric eye tracking. In: Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), pp. 110–115 (2000)

    Google Scholar 

  18. Tonsen, M., Zhang, X., Sugano, Y., Bulling, A.: Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In: Proceedings of the ACM International Symposium on Eye Tracking Research and Applications (ETRA), pp. 139–142 (2016)

    Google Scholar 

  19. Turner, J., Alexander, J., Bulling, A., Schmidt, D., Gellersen, H.: Eye pull, eye push: moving objects between large screens and personal devices with gaze and touch. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 170–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40480-1_11

    Chapter  Google Scholar 

  20. Vera-Olmos, F.J., Malpica, N.: Deconvolutional neural network for pupil detection in real-world environments (2017)

    Google Scholar 

  21. Wu, K., Otoo, E.J., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by ARC Discovery Project DP200101175 and CSIRO Data61 Grant Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengkun He or Xiangmin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Zhou, X., Wang, C. (2020). MPB: Multi-Peak Binarization for Pupil Detection. In: Yang, X., Wang, CD., Islam, M.S., Zhang, Z. (eds) Advanced Data Mining and Applications. ADMA 2020. Lecture Notes in Computer Science(), vol 12447. Springer, Cham. https://doi.org/10.1007/978-3-030-65390-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65390-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65389-7

  • Online ISBN: 978-3-030-65390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics