Abstract
Quantum computing can enable a variety of breakthroughs in research and industry in the future. Although some quantum algorithms already exist that show a theoretical speedup compared to the best known classical algorithms, the implementation and execution of these algorithms come with several challenges. The input data determines, for example, the required number of qubits and gates of a quantum algorithm. A quantum algorithm implementation also depends on the used Software Development Kit which restricts the set of usable quantum computers. Because of the limited capabilities of current quantum computers, choosing an appropriate one to execute a certain implementation for a given input is a difficult challenge that requires immense mathematical knowledge about the implemented quantum algorithm as well as technical knowledge about the used Software Development Kits. In this paper, we present a concept for the automated analysis and selection of implementations of quantum algorithms and appropriate quantum computers that can execute a selected implementation with a certain input data. The practical feasibility of the concept is demonstrated by the prototypical implementation of a tool that we call NISQ Analyzer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
References
Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quant. Inf. Comput. 3(2), 175–185 (2003)
Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. NPJ Quant. Inf. 5(1), 45 (2019)
Bishop, L.S., Bravyi, S., Cross, A., Gambetta, J.M., Smolin, J.: Quantum volume. Technical report (2017)
Brahimi, L., Bellatreche, L., Ouhammou, Y.: A recommender system for DBMS selection based on a test data repository. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2_12
Chuang, I.L., Yamamoto, Y.: Creation of a persistent quantum bit using error correction. Phys. Rev. A 55, 114–127 (1997)
Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.: On the qubit routing problem (2019)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Han, S.M., Hassan, M.M., Yoon, C.W., Huh, E.N.: Efficient service recommendation system for cloud computing market. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 839–845 (2009)
Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+2 qubits with toffoli based modular multiplication. Quant. Inf. Comput. 18(7–8), 673–684 (2017)
IBMQ team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.1 (2020). https://quantum-computing.ibm.com
IBMQ team: 5-qubit backend: IBM Q 5 Yorktown backend specification V2.1.0 (2020). https://quantum-computing.ibm.com
Abhijith, J., et al.: Quantum algorithm implementations for beginners (2018)
JavadiAbhari, A., et al.: Scaffcc: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the 11th ACM Conference on Computing Frontiers. CF 2014. Association for Computing Machinery, New York (2014)
LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019)
Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quant. Sci. Technol. 5, 1–28 (2020)
Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: Proceedings of the 13th Advanced Summer School on Service Oriented Computing, pp. 70–74. IBM Technical report, IBM Research Division (2019)
Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science. SciTePress (2020)
Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recommendation system. In: International Conference on Next Generation Web Services Practices (NWeSP 2005), p. 5 pp. (2005)
Masood, S., Soo, A.: A rule based expert system for rapid prototyping system selection. Robot. Comput. Integr. Manuf. 18(3–4), 267–274 (2002)
McCaskey, A.J., Lyakh, D., Dumitrescu, E., Powers, S., Humble, T.S.: XACC: a system-level software infrastructure for heterogeneous quantum-classical computing. Quant. Sci. Technol. 5, 1–17 (2020)
Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quant. Sci. Technol. 3(3), 030503 (2018)
Nannicini, G.: An introduction to quantum computing, without the physics (2017)
National Academies of Sciences: Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)
O’Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. 21(2), 1–43 (2019)
Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1) (2014)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000)
Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction. 1st edn. The MIT Press, Cambridge (2011)
Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: IEEE International Conference on Rebooting Computing, pp. 1–6 (2016)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Simon, D.R.: On the power of quantum computation. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS 1994, pp. 116–123. IEEE Computer Society, USA (1994)
Siraichi, M.Y., Santos, V.F., Collange, S., Quintão Pereira, F.M.: Qubit allocation. In: CGO 2018 - International Symposium on Code Generation and Optimization, pp. 1–12 (2018)
Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t\(|\)ket\(\rangle \): a retargetable compiler for NISQ devices. Quant. Sci. Technol. (2020)
Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)
Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoyanova, D., Passow, S., Vukojevic-Haupt, K.: Decision support for the migration of the application database layer to the cloud. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 1, pp. 639–646. IEEE (2013)
Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F.T., Lai, C.Y., Paz, G.: QuRE: the quantum resource estimator toolbox. In: IEEE 31st International Conference on Computer Design (ICCD), pp. 419–426. IEEE (2013)
Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 987–999. Association for Computing Machinery, New York (2019)
Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmermann, M.: TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). IEEE Computer Society (2020)
Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A declarative recommender system for cloud infrastructure services selection. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714, pp. 102–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35194-5_8
Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural decisions and patterns for transactional workflows in SOA. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 81–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74974-5_7
Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing architectural decision models with dependency relations, integrity constraints, and production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)
Acknowledgements
This work was partially funded by the BMWi project PlanQK (01MK20005N) and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K. (2020). The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. In: Dustdar, S. (eds) Service-Oriented Computing. SummerSOC 2020. Communications in Computer and Information Science, vol 1310. Springer, Cham. https://doi.org/10.1007/978-3-030-64846-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-64846-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64845-9
Online ISBN: 978-3-030-64846-6
eBook Packages: Computer ScienceComputer Science (R0)