Abstract
Pulse transit time (PTT) provides a cuffless method to measure and predict blood pressure, which is essential in long term cardiac activity monitoring. Photoplethysmography (PPG) sensors provide a low-cost and wearable approach to obtain PTT measurements. The current approach to calculating PTT relies on quasi-periodic pulse event extractions based on PPG local signal characteristics. However, due to inherent noise in PPG, especially at uncontrolled settings, this approach leads to significant errors and even missing potential pulse events. In this paper, we propose a novel approach where global features (all samples) of the time-series data are used to develop a machine learning model to extract local pulse events. Specifically, we contribute 1) a new noise resilient machine learning model to extract events from PPG and 2) results from a study showing accuracy over state of the art (e.g. HeartPy) and 3) we show that MLPTT outperforms HeartPy peak detection, especially for noisy photoplethysmography data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Geddes, L.A., Voelz, M.H., Babbs, C.F., Bourland, J.D., Tacker, W.A.: Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 18(1), 71–74 (1981). https://doi.org/10.1111/j.1469-8986.1981.tb01545.x. ISSN 0048-5772
Poon, C.C.Y., Zhang, Y.T.: Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5877–5880 (2005). https://doi.org/10.1109/IEMBS.2005.1615827
Lane, J.D., Greenstadt, L., Shapiro, D., Rubinstein, E.: Pulse transit time and blood pressure: an intensive analysis. Psychophysiology 20(1), 45–49 (1983). https://doi.org/10.1111/j.1469-8986.1983.tb00899.x. ISSN 0048-5772
Pitson, D.J., Stradling, J.R.: Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur. Respir. J. 12(3), 685–692 (1998)
Gesche, H., Grosskurth, D., Küchler, G., Patzak, A.: Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur. J. Appl. Physiol. 112, 309–315 (2011). https://doi.org/10.1007/s00421-011-1983-3
Ripoll, V.R., Vellido, A.: Blood pressure assessment with differential pulse transit time and deep learning: a proof of concept. Kidney Dis. 5(1), 23–27 (2019). https://doi.org/10.1159/000493478
Sklarsky, A., Garvin, N.M., Pawelczyk, J.A.: Limitations of pulse transit time to estimate blood pressure. FASEB J. 33(1 supplement), 562.13 (2019). https://doi.org/10.1096/fasebj.2019.33.1_supplement.562.13
Mukkamala, R., et al.: Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 62(8), 1879–1901 (2015). https://doi.org/10.1109/tbme.2015.2441951. ISSN 0018-9294
Smith, R.P., Argod, J., Pépin, J.-L., Lévy, P.A.: Pulse transit time: an appraisal of potential clinical applications. Thorax 54(5), 452–457 (1999). https://doi.org/10.1136/thx.54.5.452
Sharwood-Smith, G., Bruce, J., Drummond, G.: Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anaesthesia. BJA Br. J. Anaesth. 96(1), 100–105 (2005). https://doi.org/10.1093/bja/aei266. ISSN 0007-0912
Obrist, P.A., Light, K.C., McCubbin, J.A., Hutcheson, J.S., Hoffer, J.L.: Pulse transit time: relationship to blood pressure and myocardial performance. Psychophysiology 16(3), 292–301 (1979). https://doi.org/10.1111/j.1469-8986.1979.tb02993.x. ISSN 0048-5772
Pèpin, J.-L., et al.: Pulse transit time improves detection of sleep respiratory events and microarousals in children. CHEST 127(3), 722–730 (2005). https://doi.org/10.1378/chest.127.3.722. ISSN 0012-3692
García, M.T.G., et al.: Can pulse transit time be useful for detecting hypertension in patients in a sleep unit? Archivos de Bronconeumología (English Ed.) 50(7), 278–284 (2014). https://doi.org/10.1016/j.arbr.2014.05.001. ISSN 15792129
Elgendi, M., et al.: The use of photoplethysmography for assessing hypertension. NPJ Digital Med. 2(1), 60 (2019). https://doi.org/10.1038/s41746-019-0136-7. ISSN 2398-6352
Nabeel, P.M., Joseph, J., Sivaprakasam, M.: Arterial compliance probe for local blood pulse wave velocity measurement, vol. 2015 (2015). https://doi.org/10.1109/EMBC.2015.7319689
Samaniego, N.C., Morris, F., Brady, W.J.: Electrocardiographic artefact mimicking arrhythmic change on the ECG. Emerg. Med. J. 20(4), 356–357 (2003). https://doi.org/10.1136/emj.20.4.356
Anton, O., Fernandez, R., Rendon-Morales, E., Aviles-EspinosaÂ, R., Jordan, H., Rabe, H.: Heart rate monitoring in newborn babies: a systematic review. Neonatology 116(3) (2019). https://doi.org/10.1159/000499675
Pollreisz, D., TaheriNejad, N.: Detection and removal of motion artifacts in PPG signals. Mob. Netw. Appl (2019). https://doi.org/10.1007/s11036-019-01323-6. ISSN 1572-8153
Ponnle, A., Ogundepo, O.: Development of a computer-aided application for analyzing ECG signals and detection of cardiac arrhythmia using back propagation neural network-part I: model development. Int. J. Appl. Inf. Syst. 9 (2015). https://doi.org/10.5120/ijais15-451378
van Velzen, M.H.N., Loeve, A.J., Niehof, S.P., Mik, E.G.: Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves. Med. Biol. Eng. Comput. 55(11), 1989–2000 (2017). https://doi.org/10.1007/s11517-017-1642-x
Kortekaas, M., Niehof, S., Van Velzen, M., Galvin, E., Huygen, F., Stolker, R.: Pulse transit time as a quick predictor of a successful axillary brachial plexus block. Acta Anaesthesiologica Scandinavica 56, 1228–1233 (2012). https://doi.org/10.1111/j.1399-6576.2012.02746.x
Foo, J.Y.A., et al.: Effects of poorly perfused peripheries on derived transit time parameters of the lower and upper limbs. Generic (2008). https://doi.org/10.1515/BMT.2008.023
Foo, J.Y.A., Lim, C.S.: Difference in pulse transit time between populations: a comparison between Caucasian and Chinese children in Australia. J. Med. Eng. Technol. 32(2), 162–166 (2008). https://doi.org/10.1080/03091900600632694. ISSN 0309-1902
Foo, J.Y.A., Lim, C.S.: Difference in pulse transit time between populations: a comparison between Caucasian and Chinese children in Australia. Generic (2007). https://doi.org/10.1515/BMT.2007.043
Foo, J.Y.A.: Normality of upper and lower peripheral pulse transit time of normotensive and hypertensive children. J. Clin. Monit. Comput. 21, 243–248 (2007). https://doi.org/10.1007/s10877-007-9080-1
Singha Roy, M., Gupta, R., Chandra, J.K., Das Sharma, K., Talukdar, A.: Improving photoplethysmographic measurements under motion artifacts using artificial neural network for personal healthcare. IEEE Trans. Instrum. Meas. 67(12), 2820–2829 (2018). https://doi.org/10.1109/TIM.2018.2829488. ISSN 1557-9662
Mehrgardt, P., Zandavi, S.M., Poon, S.K., Kim, J., Markoulli, M., Khushi, M.: U-Net segmented adjacent angle detection (USAAD) for automatic analysis of corneal nerve structures. Data 5(2) (2020). https://doi.org/10.3390/data5020037
van Gent, P., Farah, H., Nes, N., Arem, B.: Analysing noisy driver physiology real-time using off-the-shelf sensors: heart rate analysis software from the taking the fast lane project (2018). https://doi.org/10.13140/RG.2.2.24895.56485
van Gent, P., Farah, H., Nes, N., Arem, B.: Heart rate analysis for human factors: development and validation of an open source toolkit for noisy naturalistic heart rate data (2018)
Kohler, B., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002). https://doi.org/10.1109/51.993193. ISSN 1937-4186
Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME–32(3), 230–236 (1985). https://doi.org/10.1109/TBME.1985.325532
Gao, M., Bari Olivier, N., Mukkamala, R.: Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiol. Rep. 4(10), e12768 (2016). https://doi.org/10.14814/phy2.12768. ISSN 2051-817X
Pimentel, M.A.F., et al.: Toward a robust estimation of respiratory rate from pulse oximeters. IEEE Trans. Biomed. Eng. 64(8), 1914–1923 (2017). https://doi.org/10.1109/TBME.2016.2613124. ISSN 1558-2531
Rajala, S., Ahmaniemi, T., Lindholm, H., Taipalus, T.: Pulse arrival time (PAT) measurement based on arm ECG and finger PPG signals - comparison of PPG feature detection methods for PAT calculation, vol. 2017 (2017). https://doi.org/10.1109/EMBC.2017.8036809
Becker, D.: Fundamentals of electrocardiography interpretation. Anesth. Prog. 53, 53–63 (2006). https://doi.org/10.2344/0003-3006(2006)53[53:FOEI]2.0.CO;2. quiz 64
Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., Tarassenko, L.: Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. IEEE J. Biomed. Health Inform. 19(3), 832–838 (2015). https://doi.org/10.1109/JBHI.2014.2338351. ISSN 2168-2208
Lin, Y.-T., Lo, Y.-L., Lin, C.-Y., Frasch, M.G., Wu, H.-T.: Unexpected sawtooth artifact in beat-to-beat pulse transit time measured from patient monitor data. PLOS ONE 14(9), e0221319 (2019). https://doi.org/10.1371/journal.pone.0221319
Acknowledgements
This work was supported by the University of Sydney Cardiovascular Initiative funding. Dr Withana is the recipient of an Australian Research Council Discovery Early Career Award (DE200100479) funded by the Australian Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mehrgardt, P., Khushi, M., Withana, A., Poon, S. (2020). Machine Learned Pulse Transit Time (MLPTT) Measurements from Photoplethysmography. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-63836-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63835-1
Online ISBN: 978-3-030-63836-8
eBook Packages: Computer ScienceComputer Science (R0)