Abstract
Non-linear source separation is a challenging open problem with many applications. We extend a recently proposed Adversarial Non-linear ICA (ANICA) model and introduce Cramer-Wold ICA (CW-ICA). In contrast to ANICA, we use a simple, closed–form optimization target instead of a discriminator–based independence measure. Our results show that CW-ICA achieves comparable results to ANICA while foregoing the need for adversarial training.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Except for the trivial cases when either J or \(J'\) is emptyset.
- 2.
In the computation we apply the equality \(\phi _D(0)=0\).
References
Almeida, L.B.: MISEP-linear and nonlinear ICA based on mutual information. J. Mach. Learn. Res. 4(Dec), 1297–1318 (2003)
Almeida, L.B.: Linear and nonlinear ICA based on mutual information - the MISEP method. Signal Process. 84(2), 231–245 (2004)
Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)
Brakel, P., Bengio, Y.: Learning independent features with adversarial nets for non-linear ica. arXiv preprint arXiv:1710.05050 (2017)
Burgess, C.P., et al.: Understanding disentangling in \(\beta \)-vae. CoRR abs/1804.03599 (2018)
Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-gaussian signals. In: Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 362–370. IET (1993)
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2172–2180. Curran Associates, Inc. (2016)
Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Helwig, N.E.: ICA: Independent Component Analysis (2015). http://CRAN.R-project.org/package=ica, r package version 1.0-1
Hirayama, J., Hyvärinen, A., Kawanabe, M.: SPLICE: fully tractable hierarchical extension of ICA with pooling. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1491–1500. PMLR, International Convention Centre, Sydney (2017)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)
Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ica. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 3765–3773. Curran Associates, Inc. (2016)
Hyvärinen, A., Pajunen, P.: Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12(3), 429–439 (1999)
Karvanen, J.: PearsonICA (2008). https://CRAN.R-project.org/package=PearsonICA, r package version 1.2-3
Karvanen, J., Eriksson, J., Koivunen, V.: Pearson system based method for blind separation. In: Proceedings of Second International Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000), Helsinki, Finland, pp. 585–590 (2000)
Kim, H., Mnih, A.: Disentangling by Factorising. ArXiv e-prints (2018)
Kingma, D., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2014)
Le, Q.V., Karpenko, A., Ngiam, J., Ng, A.Y.: ICA with reconstruction cost for efficient overcomplete feature learning. In: Advances in Neural Information Processing Systems, pp. 1017–1025 (2011)
Lee, T.W., Koehler, B.U., Orglmeister, R.: Blind source separation of nonlinear mixing models. In: Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, pp. 406–415. IEEE (1997)
Matteson, D.S., Tsay, R.S.: Independent component analysis via distance covariance. J. Am. Stat. Assoc. 112, 1–16 (2017)
Spurek, P., Tabor, J., Rola, P., Ociepka, M.: ICA based on asymmetry. Pattern Recogn. 67, 230–244 (2017)
Stuart, A., Kendall, M.G., et al.: The advanced theory of statistics. Charles Griffin (1968)
Székely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence by correlation of distances. Ann. stat. 35(6), 2769–2794 (2007)
Tabor, J., Knop, S., Spurek, P., Podolak, I., Mazur, M., Jastrzebski, S.: Cramer-wold autoencoder. arXiv preprint arXiv:1805.09235 (2018)
Tan, Y., Wang, J., Zurada, J.M.: Nonlinear blind source separation using a radial basis function network. IEEE Trans. Neural Netw. 12(1), 124–134 (2001)
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. arXiv:1711.01558 (2017)
Zhang, K., Chan, L.: Minimal nonlinear distortion principle for nonlinear independent component analysis. J. Mach. Learn. Res. 9(Nov), 2455–2487 (2008)
Zheng, C.H., Huang, D.S., Li, K., Irwin, G., Sun, Z.L.: MISEP method for postnonlinear blind source separation. Neural Comput. 19, 2557–2578 (2007)
Acknowledgements
The work of P. Spurek was supported by the National Centre of Science (Poland) Grant No. 2019/33/B/ST6/00894. The work of A. Nowak was supported by the Foundation for Polish Science Grant No. POIR.04.04.00-00-14DE/18-00 co-financed by the European Union under the European Regional Development Fund. The work of J. Tabor was supported by the National Centre of Science (Poland) Grant No. 2017/25/B/ST6/01271. The work of Ł. Maziarka was supported by the National Science Centre (Poland) grant no. 2018/31/B/ST6/00993.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Spurek, P., Nowak, A., Tabor, J., Maziarka, Ł., Jastrzębski, S. (2020). Non-linear ICA Based on Cramer-Wold Metric. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-63836-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63835-1
Online ISBN: 978-3-030-63836-8
eBook Packages: Computer ScienceComputer Science (R0)