Abstract
The performance of multi-layer feed-forward neural networks is closely related to the success of training algorithms in finding optimal weights in the network. Although conventional algorithms such as back-propagation are popular in this regard, they suffer from drawbacks such as a tendency to get stuck in local optima. In this paper, we propose an effective hybrid algorithm, BLPSO-GBS, for neural network training based on particle swarm optimisation (PSO), biogeography-based optimisation (BBO), and a global-best strategy. BLPSO-GBS updates each particle based on neighbouring particles and a biogeography-based learning strategy is used to generate the neighbouring particles using the migration operator in BBO. Our experiments on different benchmark datasets and comparison to various algorithms clearly show the competitive performance of BLPSO-GBS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadian, S., Khanteymoori, A.R.: Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp. 1–6 (2015)
Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2016). https://doi.org/10.1007/s00500-016-2442-1
Amirsadri, S., Mousavirad, S.J., Ebrahimpour-Komleh, H.: A levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Comput. Appl. 30(12), 3707–3720 (2018)
Bairathi, D., Gopalani, D.: Salp swarm algorithm (SSA) for training feed-forward neural networks. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving. AISC, vol. 816, pp. 521–534. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1592-3_41
Bidgoli, A.A., Komleh, H.E., Mousavirad, S.J.: Seminal quality prediction using optimized artificial neural network with genetic algorithm. In: 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 695–699 (2015)
Chen, X., Tianfield, H., Mei, C., Du, W., Liu, G.: Biogeography-based learning particle swarm optimization. Soft. Comput. 21(24), 7519–7541 (2016). https://doi.org/10.1007/s00500-016-2307-7
Gudise, V.G., Venayagamoorthy, G.K.: Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: IEEE Swarm Intelligence Symposium, pp. 110–117. IEEE (2003)
Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)
Jalali, S.M.J., Ahmadian, S., Kebria, P.M., Khosravi, A., Lim, C.P., Nahavandi, S.: Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 596–607. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_49
Jalali, S.M.J., Karimi, M., Khosravi, A., Nahavandi, S.: An efficient neuroevolution approach for heart disease detection. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3771–3776. IEEE (2019)
Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_30
Kennedy, J., Eberhart, R.: Particle swarm optimization (PSO). In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Khishe, M., Safari, A.: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm. Wireless Pers. Commun. 108(4), 2241–2260 (2019)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Mirjalili, S.: How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43(1), 150–161 (2015)
Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)
Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., Schaefer, G.: A memetic imperialist competitive algorithm with chaotic maps for multi-layer neural network training. Int. J. Bio-Inspired Comput. 14(4), 227–236 (2019)
Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., Schaefer, G., Korovin, I.: An effective hybrid approach for optimising the learning process of multi-layer neural networks. In: International Symposium on Neural Networks, pp. 309–317 (2019)
Mousavirad, S.J., Ebrahimpour-Komleh, H.: Human mental search: a new population-based metaheuristic optimization algorithm. Appl. Intell. 47(3), 850–887 (2017). https://doi.org/10.1007/s10489-017-0903-6
Mousavirad, S.J., Schaefer, G., Jalali, S.M.J., Korovin, I.: A benchmark of recent population-based metaheuristic algorithms for multi-layer neural network training. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1402–1408 (2020)
Mousavirad, S., Akhlaghian, F., Mollazade, K.: Classification of rice varieties using optimal color and texture features and BP neural networks. In: 7th Iranian Conference on Machine Vision and Image Processing, pp. 1–5 (2011)
Si, T., Dutta, R.: Partial opposition-based particle swarm optimizer in artificial neural network training for medical data classification. Int. J. Inf. Technol. Decis. Making 18(5), 1717–1750 (2019)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mousavirad, S.J., Jalali, S.M.J., Ahmadian, S., Khosravi, A., Schaefer, G., Nahavandi, S. (2020). Neural Network Training Using a Biogeography-Based Learning Strategy. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-63823-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63822-1
Online ISBN: 978-3-030-63823-8
eBook Packages: Computer ScienceComputer Science (R0)