Neural Network Training Using a Biogeography-Based Learning Strategy | SpringerLink
Skip to main content

Neural Network Training Using a Biogeography-Based Learning Strategy

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

The performance of multi-layer feed-forward neural networks is closely related to the success of training algorithms in finding optimal weights in the network. Although conventional algorithms such as back-propagation are popular in this regard, they suffer from drawbacks such as a tendency to get stuck in local optima. In this paper, we propose an effective hybrid algorithm, BLPSO-GBS, for neural network training based on particle swarm optimisation (PSO), biogeography-based optimisation (BBO), and a global-best strategy. BLPSO-GBS updates each particle based on neighbouring particles and a biogeography-based learning strategy is used to generate the neighbouring particles using the migration operator in BBO. Our experiments on different benchmark datasets and comparison to various algorithms clearly show the competitive performance of BLPSO-GBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/index.php.

References

  1. Ahmadian, S., Khanteymoori, A.R.: Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp. 1–6 (2015)

    Google Scholar 

  2. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2016). https://doi.org/10.1007/s00500-016-2442-1

    Article  Google Scholar 

  3. Amirsadri, S., Mousavirad, S.J., Ebrahimpour-Komleh, H.: A levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Comput. Appl. 30(12), 3707–3720 (2018)

    Article  Google Scholar 

  4. Bairathi, D., Gopalani, D.: Salp swarm algorithm (SSA) for training feed-forward neural networks. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving. AISC, vol. 816, pp. 521–534. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1592-3_41

    Chapter  Google Scholar 

  5. Bidgoli, A.A., Komleh, H.E., Mousavirad, S.J.: Seminal quality prediction using optimized artificial neural network with genetic algorithm. In: 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 695–699 (2015)

    Google Scholar 

  6. Chen, X., Tianfield, H., Mei, C., Du, W., Liu, G.: Biogeography-based learning particle swarm optimization. Soft. Comput. 21(24), 7519–7541 (2016). https://doi.org/10.1007/s00500-016-2307-7

    Article  Google Scholar 

  7. Gudise, V.G., Venayagamoorthy, G.K.: Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: IEEE Swarm Intelligence Symposium, pp. 110–117. IEEE (2003)

    Google Scholar 

  8. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

    Article  Google Scholar 

  9. Jalali, S.M.J., Ahmadian, S., Kebria, P.M., Khosravi, A., Lim, C.P., Nahavandi, S.: Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 596–607. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_49

    Chapter  Google Scholar 

  10. Jalali, S.M.J., Karimi, M., Khosravi, A., Nahavandi, S.: An efficient neuroevolution approach for heart disease detection. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3771–3776. IEEE (2019)

    Google Scholar 

  11. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_30

    Chapter  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization (PSO). In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  13. Khishe, M., Safari, A.: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm. Wireless Pers. Commun. 108(4), 2241–2260 (2019)

    Article  Google Scholar 

  14. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  15. Mirjalili, S.: How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43(1), 150–161 (2015)

    Article  Google Scholar 

  16. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., Schaefer, G.: A memetic imperialist competitive algorithm with chaotic maps for multi-layer neural network training. Int. J. Bio-Inspired Comput. 14(4), 227–236 (2019)

    Article  Google Scholar 

  18. Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., Schaefer, G., Korovin, I.: An effective hybrid approach for optimising the learning process of multi-layer neural networks. In: International Symposium on Neural Networks, pp. 309–317 (2019)

    Google Scholar 

  19. Mousavirad, S.J., Ebrahimpour-Komleh, H.: Human mental search: a new population-based metaheuristic optimization algorithm. Appl. Intell. 47(3), 850–887 (2017). https://doi.org/10.1007/s10489-017-0903-6

    Article  Google Scholar 

  20. Mousavirad, S.J., Schaefer, G., Jalali, S.M.J., Korovin, I.: A benchmark of recent population-based metaheuristic algorithms for multi-layer neural network training. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1402–1408 (2020)

    Google Scholar 

  21. Mousavirad, S., Akhlaghian, F., Mollazade, K.: Classification of rice varieties using optimal color and texture features and BP neural networks. In: 7th Iranian Conference on Machine Vision and Image Processing, pp. 1–5 (2011)

    Google Scholar 

  22. Si, T., Dutta, R.: Partial opposition-based particle swarm optimizer in artificial neural network training for medical data classification. Int. J. Inf. Technol. Decis. Making 18(5), 1717–1750 (2019)

    Article  Google Scholar 

  23. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Jafar Jalali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mousavirad, S.J., Jalali, S.M.J., Ahmadian, S., Khosravi, A., Schaefer, G., Nahavandi, S. (2020). Neural Network Training Using a Biogeography-Based Learning Strategy. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics