Efficient Binary Multi-view Subspace Learning for Instance-Level Image Retrieval | SpringerLink
Skip to main content

Efficient Binary Multi-view Subspace Learning for Instance-Level Image Retrieval

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

The existing hashing methods mainly handle either the feature based nearest-neighbour search or the category-level image retrieval, whereas a few efforts are devoted to instance retrieval problem. Besides, although multi-view hashing methods are capable of exploring the complementarity among multiple heterogeneous visual features, they heavily rely on massive labeled training data, and somewhat affects the real-world applications. In this paper, we propose a binary multi-view fusion framework for directly recovering a latent Hamming subspace from the multi-view features. More specifically, the multi-view subspace reconstruction and the binary quantization are integrated in a unified framework so as to minimize the discrepancy between the original multi-view high-dimensional Euclidean space and the resulting compact Hamming subspace. In addition, our method is amenable to efficient iterative optimization for learning a compact similarity-preserving binary code. The resulting binary codes demonstrate significant advantage in retrieval precision and computational efficiency at the cost of limited memory footprint. More importantly, our method is essentially an unsupervised learning scheme without any labeled data involved, and thus can be used in the cases when the supervised information is unavailable or insufficient. Experiments on public benchmark and large-scale datasets reveal that our method achieves competitive retrieval performance comparable to the state-of-the-art and has excellent scalability in large-scale scenario.

This work was supported by the Natural Science Foundation of China (NSFC) under Grants 61703096, 61273246 and the Natural Science Foundation of Jiangsu Province under Grant BK20170691.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  2. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW, pp. 512–519 (2014)

    Google Scholar 

  3. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: ACM MM, pp. 157–166 (2014)

    Google Scholar 

  4. Yandex, A.B., Lempitsky, V.: Aggregating local deep features for image retrieval. In: ICCV, pp. 1269–1277 (2015)

    Google Scholar 

  5. Li, J., Yang, B., Yang, W., Sun, C., Zhang, H.: When deep meets shallow: subspace-based multi-view fusion for instance-level image retrieval. In: ROBIO, pp. 486–492 (2018)

    Google Scholar 

  6. Zhou, W., Li, H., Sun, J., Tian, Q.: Collaborative index embedding for image retrieval. IEEE TPAMI 40(5), 1154–1166 (2018)

    Article  Google Scholar 

  7. Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: LDAHash: improved matching with smaller descriptors. IEEE TPAMI 34(1), 66–78 (2012)

    Article  Google Scholar 

  8. Zhang, J., Peng, Y.: SSDH: semi-supervised deep hashing for large scale image retrieval. IEEE TCSVT 29(1), 212–225 (2019)

    MathSciNet  Google Scholar 

  9. Liu, X., Huang, L., Deng, C., Lu, J., Lang, B.: Multi-view complementary hash tables for nearest neighbor search. In: ICCV, pp. 1107–1115 (2015)

    Google Scholar 

  10. Zhu, L., Lu, X., Cheng, Z., Li, J., Zhang, H.: Deep collaborative multi-view hashing for large-scale image search. IEEE TIP 29, 4643–4655 (2020)

    MathSciNet  Google Scholar 

  11. Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. IEEE TPAMI 40(5), 1224–1244 (2018)

    Article  Google Scholar 

  12. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE TPAMI 40(4), 769–790 (2018)

    Article  Google Scholar 

  13. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: CVPR, pp. 817–824 (2011)

    Google Scholar 

  14. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  15. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161–2168 (2006)

    Google Scholar 

  16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  17. Li, J., Xu, C., Gong, M., Xing, J., Yang, W., Sun, C.: SERVE: soft and equalized residual vectors for image retrieval. Neurocomputing 207, 202–212 (2016)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1–14 (2015)

    Google Scholar 

  19. Arandjelović, R., Zisserman, A.: All about VLAD. In: CVPR, pp. 1578–1585 (2013)

    Google Scholar 

  20. Alzubi, A., Amira, A., Ramzan, N.: Content-based image retrieval with compact deep convolutional features. Neurocomputing 249, 95–105 (2017)

    Article  Google Scholar 

  21. Ng, J.Y., Yang, F., Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: CVPRW, pp. 53–61 (2015)

    Google Scholar 

  22. Jiang, Q., Li, W.: Scalable graph hashing with feature transformation. In: IJCAI, pp. 2248–2254 (2015)

    Google Scholar 

  23. Yu, F.X., Kumar, S., Gong, Y., Chang, S.: Circulant binary embedding. In: ICML, pp. 946–954 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Li, J., Xu, J. (2020). Efficient Binary Multi-view Subspace Learning for Instance-Level Image Retrieval. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics